2009 DOE Hydrogen Program
Low-Cost High-Efficiency High-Pressure H₂ Storage

Quantum Fuel Systems Technologies Worldwide Inc.
Date: May 20th 2009
Carter Liu, PhD

Project ID #
STP_04_Liu

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

Timeline
- Project start date: 07/2008
- Project end date: 01/2010
- Percent complete: 36%

Budget
- **Total budget:** $2,865,932
- DOE share: $1,438,733
- QT share: $1,432,199
- FY08 funding: $0
- Funding for FY09: $226,476

Barriers
- Materials development
- Manufacturability
 - Blow molding/injector molding capability

Partners
- None currently
Project Objectives- Relevance

Improve the cost and weight efficiency of Type IV compressed H₂ storage vessels to approach the 2010 DOE targets by reducing raw material costs through material development and design & manufacturing parameter modifications.

The project is split into the following tasks:

– Plastic liner development
– Metal fitting development
– Optimization of carbon fiber composite usage
Milestones

<table>
<thead>
<tr>
<th>Month</th>
<th>Milestone</th>
</tr>
</thead>
</table>
| 07/08-11/08 | Program Kick-off
Liner material literature review; 100% complete |
| 11/08-01/09 | Liner material property characterization/evaluation; 90% complete
Investigate blow molding processes to find appropriate vendors & manufacture “liners”; 60% complete |
| 01/09-04/09 | Liner test evaluations; 60% complete
Metal fitting material candidate literature review; 100% complete
Metal fitting to liner interface design & FEA; 30% complete
Composite optimization literature review; 100% complete |
| 04/09-10/09 | Complete liner evaluations
Evaluate metal fitting candidate materials for hydrogen compatibility
Composite Tank fabrication |
| 10/09-01/10 | EIHP tests to evaluation of new boss-liner assembly
EIHP tests to evaluate composite optimization and process development |
| 01/10 | Provide cost model
Final report preparation & submittal (inclusive of EIHP results) |
| 05/10 | Merit Review |
Approach Outline

Each task aims to reduce cost and weight to meet DOE 2010 targets:

• **Liner Development**
 – Materials study (H\textsubscript{2} compatibility; permeation; toughness)
 – Liner-Metal interface design (new design)
 – Investigation of mass-production methods (blow-molding)

• **Metal Fitting Development**
 – Metal fitting material investigation
 – Stress analysis
 – Liner-Metal interface redesign (new design)

• **Composite Design Optimization**
 – Manufacturing process evaluation
 – Further optimization of composite design to improve fiber translation1 and reduce composite usage

1 translation= reinforcing efficiency of carbon fibers
Accomplishments - Baseline

Material Cost Distribution: 129L 70 MPa Tank (Baseline)

Material Weight Distribution: 129L 70 MPa Tank (Baseline)
Accomplishments - Current

Material Cost Distribution:
129L 70 MPa Tank (2008)

Material Weight Distribution:
129L 70 MPa Tank (2008)
Accomplishments- Current tank

Tank Nominal Capacity: 129 Liter, 5.6 kg H₂

Current Efficiency:
- 0.08 kWh/$: Energy / Cost
- 2.36 kWh/kg: Energy / Mass
- 1.72 kWh/L: Energy / Volume

2010 DOE targets:
- System energy cost= 0.25kWh/$
- System gravimetric capacity= 2.0kWh/kg
- System volumetric capacity= 1.5kWh/L

Data based on current manufacturing cost/mass/volume for a single tank. There are no components in addition to what is listed above.
Accomplishments- Tank Cross-section

129L tank polar end close-up cross section

129L tank cross section
Technical Accomplishments: Liner Development

• Evaluated blow-molded plastics: HDPE, PET, PEN, POM, Multi-layered
 ▪ Toughness
 ▪ Tensile properties
 ▪ Durability
 ▪ Permeability

• Manufactured and evaluated plastic liners out of the 1st molding iteration according to EIHP standards: Pressure Cycle Fatigue, Permeation, Boss-Liner seal
Technical Accomplishments: Metal Fittings

- Investigated different materials (literature review);
- Design development
 - Material choices:
 - Stainless steel
 - Aluminum alloys
 - Component elimination: new design= valve & boss only
 - Geometry reduction
Future Work: Liner Development

• Blow molding process iteration for improved:
 – toughness and fatigue resistance
 – heat resistance in the anneal process
 – thickness distribution
 – barrier performance to hydrogen gas
Future Work: Liner Development

- Liner interface design to metal fitting development: effective seal against:
 - pressure
 - temperature fluctuation
 - vibration
 - automotive fluid corrosion
 - torque applied during operation
Future Work:
Metal Fitting Development

- Statistical evaluation of polar boss hydrogen compatible metals to reduce material costs

\[Y = \beta_0 + \beta_1 T + \beta_2 P + \beta_3 \sigma + \beta_4 t + \beta_5 TP + \beta_6 P\sigma + \beta_7 T\sigma + e \]

- \(T \): exposure temperature in \(H_2 \)
- \(P \): pressure
- \(\sigma \): pre-stress level
- \(t \): charging time
- \(TP, T\sigma, P\sigma \): interaction terms
- \(e \): error

Target = 20% of current metal fitting cost; 50% weight savings vs. start-of-project value
Future Work: Metal Fitting Development

• Design and evaluate the liner-metal interface, with the aim to eliminate the metal adapter & reduce part size

• Stress analysis through FEA

• Concurrent tank valve development
Future Work: Composite Optimization

- Composite translation efficiency improvement
 - Manufacturing process
 - Fiber lay-out

- Optimize fiber lay-out design and FEA stress analysis accuracy
 - Characterize the appropriate surface curvature to the software
 - Calculate the best surface fiber orientation with certain principal radii of curvature
 - Investigate the element types used in FEA
Future Work: Composite Optimization

• Evaluate the fiber translation efficiency effects on manufacturing parameters and optimize them correspondingly
 – Bandwidth and position distribution: balance between accuracy and winding speed
 – Balance between fiber tow tension and surface curvature to reach the desired compaction
 – Resin appropriate cure profile for less residual stress
 – Resin bath temperature control

Target= 25% reduction in composite usage vs. start-of-project value
Future Work

Material Cost Distribution:
2010 Target 129L 70 MPa Tank

Material Weight Distribution:
2010 Target 129L 70 MPa Tank
Future Work

Tank Nominal Capacity: 129 Liter, 5.6 kg H₂

Raw Material Cost (44% of current version tank):

 Composite Usage (85%) + Liner (0.3%) + Metal Fittings (15%)

Tank Weight (87% of current version tank):

 Composite Usage (86%) + Liner (10%) + Metal Fittings (3%)

Metal Fittings = Polar Boss + Valve
Composite Usage = Carbon fiber + Resin matrix

Target Efficiency:

0.19 kWh/$: Energy / Cost
2.72 kWh/kg: Energy / Mass
1.72 kWh/L: Energy / Volume

2010 DOE targets:

System energy cost= 0.25kWh/$
System gravimetric capacity= 2.0kWh/kg
System volumetric capacity= 1.5kWh/L

Data based on DOE volume of 500k units/year for a single tank (metal fittings, composite & liner). There are no components in addition to the one tank for this specific project.
Project Summary

<table>
<thead>
<tr>
<th>Relevance</th>
<th>Optimization of current manufacturing processes for low cost H₂ storage vessels</th>
</tr>
</thead>
</table>
| Approach | Liner and metal fitting development
Carbon fiber translation optimization |
| Proposed Work | Liner development (material & process)
Metal fitting development (material and interface design)
Carbon fiber manufacturing process design of experiment (optimization) |

Project Progress

<table>
<thead>
<tr>
<th></th>
<th>Current</th>
<th>Target</th>
<th>DOE 2010 Goals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>0.08 kWh/$</td>
<td>0.19 kWh/$</td>
<td>0.25 kWh/$</td>
</tr>
<tr>
<td>Weight</td>
<td>2.36 kWh/kg</td>
<td>2.72 kWh/kg</td>
<td>2.0 kWh/kg</td>
</tr>
</tbody>
</table>