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Overview

Timeline

Project start date: 9/1/2008
Project end date: 1/31/2013
Percent complete: 5%

Budget
O Total project funding

= DOE share: $1.38 M
[ Funding received in FY08: $75 K
[ Funding for FY09: $400 K

Barriers

Barriers addressed

O Improved gravimetric and volumetric
density of hydrogen uptake

Hydrogen capacity and fast kinetics at
77 K

a
O Improved hydrogen binding energy
a

Synthetic scale up of COFs/ZIFs to
cubic meters

Collaborating Partner
O BASF



Objectives

Room temperature H, storage in COFs and ZIFs to meet DOE 2010 Targets

O Synergistic work between Yaghi (UCLA) and Goddard (Caltech)

O High-throughput computational screening to identify new materials for
favorable H, uptake

O High-throughput preparation/characterization of doped materials
predicted for high uptake

O High-throughput screening to testing a diverse set of compositions and
structures

0 Develop chemistry and perform computational testing of Li/Na/K
doping effects on H, uptake

O Predict and determine heat evolved upon reversible uptake and
release



Milestones

Year 1

1. Develop new force fields for modeling adsorption properties of ZIFs and
COFs. Test models using reported adsorption data for a range of known ZIFs
and COFs.

2. Experimentally explore metal impregnation conditions in existing ZIFs and
COFs, and characterize metal density in the frameworks. Compare with
predictions from theory.

3. Investigate pressure and temperature dependence of H, uptake in
impregnated existing ZIFs and COFs over the parameter range specified in
DOE YR2010 guidelines (6 wt % and 45 g L'* up to 100 bar, -30/50 °C).
Compare with predictions from theory.

4. Discover new ZIF and COF materials utilizing high-throughput methods and
explore hydrogen uptake properties of ZIFs and COFs in the same
parameter range.



Description of new materials

Covalent Organic and Zeolitic Imidazolate Frameworks

(COFs and ZIFs)

e COFs are lightweight materials

e ZIFs are highly stable materials

e COFs and ZIFs are suitable towards light metal impregnation

COF-108



Covalent Organic Frameworks (COFs)
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Low density crystalline 3D COFs

COF-105
(d=0.18 g cm™3)

COF-108
o (0d=0.17 gcmd)

Science 2007 ¢



Excess Hy uptake (wt%)

Gravimetric excess and total H, uptake of COFs at 77 K
COF-105 will have the highest uptake (excess 10% and total 20%)

Goddard’s calculations
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Accomplishments: High-pressure H, isotherms of
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H, uptake in 3D COFs is almost same as that in MOF-177.
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Excess Hz uptake / mg g-1

Accomplishments: High-pressure H, isotherms of
COFs at 298 K
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Better volumetric H, density compared to compressed H,
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Accomplishments: Modeling study of new 3D COFs
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H, uptake in COFs will be simulated using GCMC simulation with ab-initio based FFs.
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Approach 1: Post-synthesis modification of COFs
(e.g. Impregnation of COFs with metals)
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Theoretical prediction of binding energy

Model system:
[(BPYDC)M(CO),J~

= M™ =Sc, Ti, V, Cr, Mn, Fe, Co,
Ni, Cu,and Zn (n =0, 1 and 2)
» Preliminary DFT calculations

[(BPY)VZ*1(H,),

n = 0: Mn has stronger binding energy to BPyDC than its cohesive energy.

n =1: Mn*, Co*, Ni*, Cu*, and Zn* have stronger binding energy to the ligand.
n = 2: All metals are favorable for formation of (BPyDC)M?* complexes.
Metal impregnated materials would be experimentally accessible

Interaction between H, molecules and the (BPyDC)M?*

(BPyDC)M?*(H,), average H, binding energies per one H, molecule:
-24.6 kJ mol for Zn?* to -62.2 kJ mol* for V?*

=>» These are ideal values for H, storage at room temperature.
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Approach 2: Impregnation/intercalation of COFs
with metals

Youngs et al., Organometallics, 1991, 10, 2089; Zhang et al., J. Org. Chem., 2005, 70, 10198;
Malaba et al., Organometallics, 1993, 12, 1266.
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B ” @ stabile rather than n°-benzene-Li

B'\,
‘ ‘ " system.
@ . 0 = Build model structures (e.g. known 2D
and 3D COF structures)
«_» = Estimate H, uptake behavior at room
temperature
o~ S on * Discover experimental materials
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Zeolitic Imidazolate Frameworks (ZIFs)
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Park, K. S.; Ni, Z.; Coté, A. P.; Choi, J. Y.; Huang, R.; Uribe-Romo, F.J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M.

PNAS, 2006, 103, 10186.
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Synthesis of ZIFs
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O Design of composition (metal centers and organic linkers).
Synthesis and structural characterization is well worked out.

O Control of structure, topology, interpenetration and porosity.
O High-throughput technique is available for quick screening.

More than 50 ZIFs have been discovered by high-throughput methods. 16




Designed porosity and functionality in ZIFs
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R. Banerjee, H. Furukawa, D. Britt, C. Knobler, M. O'Keeffe, O. M. Yaghi, JACS 2009, 131, 3875-3877.
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H> uptake / cm3 g-1
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Accomplishment: H, uptake in ZIFs
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Accomplishment: High pressure H, isotherms of ZIFs
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Poor H, uptake at room temperature.
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Approach 3: Post-synthesis modification of ZIFs
(e.g. potential halogen-lithium exchange)
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Summary

Relevance: For room temperature hydrogen storage, a systematic survey was
started experimentally as well as theoretically.

Approach: Aim at increasing strong binding sites for maximum hydrogen
uptake capacity without losing pore volume.

Technical accomplishments and progress:
* High pressure H, uptake behavior in COFs
= Synthesis of new ZIFs for metal impregnation
= Began modeling study for optimal materials

Technology transfer/collaborations: Active relationship with collaboration
partners and BASF.

Proposed future research:
= Employ light weight metals to create strong binding sites.
= Material design based on theoretical prediction.
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