Solid-State Hydriding and Dehydriding of LiBH₄ + MgH₂ Enabled via Mechanical Activation and Nano-Engineering

Leon L. Shaw, Tippawan Markmaitree, William Osborn, Xuefei Wan, Kyle Crosby
University of Connecticut

Z. Gary Yang, Jianzhi Hu, Ja Hu Kwak
Pacific Northwest National Laboratory

May 18 – 22, 2009
2009 DOE Hydrogen Program Review

Project ID: stp_44_shaw
Overview

Timeline:
- Project start date: December 2004
- Project end date: December 2009
- Percent complete: 85%

Budget:
- Total project funding:
 - DOE share: $1.35 mil
 - Contractor share: $0.4 mil
- Funding received in FY08: $250,000 for UConn; $80,000 for PNNL
- Funding for FY09: $200,000 for UConn; $70,000 for PNNL

Partners/Collaborators:
- Pacific Northwest National Laboratory – NMR analysis
- Universidad de Extremadura, Badajoz, Spain – X-ray analysis
- HRL Laboratories – Ball milling of LiBH₄ + MgH₂ at liquid N₂ temperature
- University of Pittsburgh – Information exchange

Barriers
A. System weight and volume: 2 kWh/kg & 1.5 kWh/L
E. Charging/discharging rates: 3 min for 5 kg
Technical Objectives – Relevance

Objective in FY 08:

- Establishing solid-state hydriding and dehydriding kinetics of LiBH₄ + MgH₂ systems
- Enhancing solid-state hydriding and dehydriding kinetics of LiBH₄ + MgH₂ via doping of transition metals such as Mn and V
- Enhancing solid-state hydriding and dehydriding kinetics of LiBH₄ + MgH₂ via milling additives such as graphite

Objective in FY 09:

- Further improving the solid-state hydriding/dehydriding properties of LiBH₄ + MgH₂ via ball milling at liquid nitrogen temperature with the addition of transition metals and milling additives such as boron nitride
- Investigating the hydriding and dehydriding reversibility of carbon aerogel confined LiBH₄ and increasing its storage capacity
- Demonstrating hydrogen uptake and release of LiBH₄ + MgH₂ systems with a storage capacity of ~ 10 wt% H₂ at 200°C
Technical Impacts – Relevance

- Demonstrated hydriding and dehydriding reactions of LiBH$_4$ + MgH$_2$ systems at the solid state, i.e., below the melting point of LiBH$_4$ ($T_m = 280^\circ$C) with 9.3 wt% H$_2$ uptake and 4.5 wt% H$_2$ release;

- Established a two-step ball milling procedure to improve the solid-state hydriding and dehydriding kinetics of LiBH$_4$ + MgH$_2$ systems;

- Identified the solid-state hydriding and dehydriding mechanisms and established a partial ion exchange model to guide the improvement of the diffusion-controlled hydriding dehydriding reaction; and

- Demonstrated the release of H$_2$ from LiBH$_4$ at 80°C and the completion of H$_2$ release at 275°C via nano-engineering with carbon aerogel confinement.
Technical Methods – Approach

- Identifying the mechanism and rate-controlling step of solid-state hydriding and dehydriding reactions of LiBH$_4$ + MgH$_2$ systems.

- Liquid nitrogen temperature ball milling combined with doping of transition metals and milling additives to enhance the solid-state hydriding and dehydriding kinetics.

- Developing the mechanistic understanding of the effect of mechanical activation and nano-engineering on hydriding and dehydriding properties.

- Applying the fundamental understanding of mechanical activation and the established reaction mechanism and rate-controlling step to enhancing the solid-state hydriding and dehydriding properties of LiBH$_4$ + MgH$_2$ systems.
Milestones – Approach

<table>
<thead>
<tr>
<th>Month/Year</th>
<th>Milestone or Go/No-Go Decision</th>
</tr>
</thead>
</table>
| **Nov-08** | **Milestone:** Establish the atomic level understanding of the mechanism and kinetics of solid-state hydriding/dehydriding reactions of mechanically activated, nano-engineered LiBH$_4$ + MgH$_2$ systems;
(ii) Demonstrate hydriding and dehydriding reactions of LiBH$_4$ + MgH$_2$ systems at the solid state, i.e., below the melting point of LiBH$_4$ (T_m = 280°C);
(iii) Demonstrate hydrogen uptake and release of (LiBH$_4$ + MgH$_2$) systems with a storage capacity of ~ 10 wt% H$_2$ at 200°C. |
| **Dec-08** | **Go/No-Go Decision:** Demonstrate hydrogen uptake and release of (LiBH$_4$ + MgH$_2$) systems with a storage capacity of ~ 10 wt% H$_2$ at 200°C.
(a) Milestones (i) and (ii) were met; however, milestone (iii) was not.
(b) A no-go decision was made because milestone (iii) was not met.
(c) This project with the original end date of December 2010 will be terminated in December 2009. |
| **Dec-09** | **Milestone:** Demonstrate hydrogen uptake and release of (LiBH$_4$ + MgH$_2$) systems with a storage capacity of ~ 10 wt% H$_2$ at 200°C. |
Solid-State Hydriding and Dehydriding of the LiBH$_4$+MgH$_2$ Storage System

- LiBH$_4$ + $\frac{1}{2}$MgH$_2$ \leftrightarrow LiH + $\frac{1}{2}$MgB$_2$ + 2H$_2$
- 11.6 wt% H$_2$
- ΔH = 44 kJ·mol$^{-1}$ H$_2$
- T_m(LiBH$_4$) = 280 °C
- T = 265 °C \Rightarrow Solid State Operation

- Milled in the dehydrogenated state
- Milling duration greatly effects properties
- Solid-state hydriding and dehydriding accomplished by long-term ball milling – nano-particle formation & high crystal defects (high diffusion rates)
Technical Accomplishments and Progress (FY09)

Enhancing Hydriding & Dehydriding Properties via Milling Additives

- Include graphite in ball milling of LiH+MgB\(_2\) to improve milling efficiency and uniformity
- Normalized composition to exclude 15 vol% C
- Simply adding graphite reduces absorption by 40%
- LiH and C are reactive – Two-step milling to address this issue (e.g., 120h without C + 1h with C)
Technical Accomplishments and Progress (FY09)

Solid-State Hydrogen Release of LiBH$_4$+MgH$_2$ Storage System

- 120 hr milling with C does improve release kinetics
- *Two-step milling*, i.e., 120+3 and 120+1 further enhances performance
- 120+1 milling is better than 120+3 milling because of the limited reaction between LiH and C
- Release of 4.5 wt% H$_2$ at 265°C accomplished.
Technical Accomplishments and Progress (FY09)

Further Enhancing the Solid-State Hydrogen Uptake/Release Kinetics via Milling at Liquid Nitrogen Temperature

- 120hr RT milling for LiH and MgB\(_2\), followed by Liq. N\(_2\) milling – *Two-step milling at Liq. N\(_2\)*
- Liq. N\(_2\) milling provides the best improvement because of the limited reaction between LiH and C
- 9.3 wt% H\(_2\) uptake at 265°C accomplished
- Anomalous absorption during the temp ramp
Further Enhancing the Solid-State Hydrogen Uptake/Release Kinetics via Milling at Liquid Nitrogen Temperature (Cont.)

- Samples milled in the dehydrogenated state are exposed to 5+ hours at 265 °C (97% T_m) → Growth
- 4.2 wt% H$_2$ release at 265 °C
- LN$_2$ milling does not offer large improvements in hydrogen release over RT milling, suggesting that hydriding & dehydriding kinetics are controlled by different mechanisms.
265 °C allows solid-state, but is still too warm

Diffusion rate is thermally activated

\[D = D_0 \exp\left(-\frac{Q}{RT}\right) \]

T = 235 °C & 6.1 wt% H₂ uptake
11B MAS NMR spectra:
a) Bulk LiBH$_4$
b) Bulk MgB$_2$
c) LiH + MgB$_2$ with 3hr ball milling
d) LiH + MgB$_2$ with 120hr ball milling

- The similar 11B MAS centerband peak positions of the 3hr and 120hr ball milled LiH+MgB$_2$ as that of pure MgB$_2$ indicates that the layered boron structure is unchanged during ball milling.
- The substantially increased centerband linewidth for the 120hr milled sample suggests that the MgB$_2$ particle size is dramatically decreased by ball milling.
The 2.76ppm 6Li peak is assigned to LiH, while the 0.06ppm 6Li peak is an intermediate in an ionic state. The quantity of the intermediate increases with the milling time.

Long-term ball milling (120 h) leads to the formation of amorphous MgH$_2$ and the particle size refinement of MgB$_2$.

Approximately 50% of MgB$_2$ is converted to MgH$_2$ during 120h ball milling.
Long-term ball milling results in the partial exchange of the Mg\(^{2+}\) ions in the MgB\(_2\) crystal by the Li\(^{+}\) ions from the LiH crystal.

This partial ion exchange results in the formation of a compound with a composition of \((\text{Mg}_{1-x}\text{Li}_{2x})\text{B}_2\) where \(x\) is a variable changing from 0 to less than 1.

Each expelled magnesium combines with two protons from LiH to form MgH\(_2\).

Formation of \((\text{Mg}_{1-x}\text{Li}_{2x})\text{B}_2\) enhances the hydriding reaction because Mg needs to be expelled to form LiBH\(_4\).
During hydrogenation LiH continues to react with MgB$_2$ to form the intermediate (Mg$_{1-x}$Li$_{2x}$)B$_2$ which is subsequently hydrided to form LiBH$_4$, as shown by 6Li MAS spectra.

During hydrogenation MgB$_2$ continues to decreases while LiBH$_4$ increases, as shown by 11B MAS spectra.

During hydrogenation MgB$_2$ continues to decrease while MgH$_2$ increases, not shown here because of the space limitation.
Solid-state hydriding and dehydriding of the LiBH₄ + MgH₂ system are diffusion-controlled.

The diffusion control phenomenon is in good accordance with the partial ion exchange model identified.

Thus, to enhance the hydriding and dehydriding kinetics of LiBH₄ + MgH₂, one needs nano-particles and fast diffusion rates.

Analysis of the hydrogenation curves of the 120hr, 24hr, and 3hr ball-milled mixtures, based on the diffusion-controlled core/shell model.
Mn enhances hydrogenation because it dissolves in MgB$_2$. However, it does not improve dehydrogenation.

V does not enhance hydrogenation because it does not dissolve in MgB$_2$. However, it improves dehydrogenation because V forms VH$_{0.81}$ during hydrogenation and VH$_{0.81}$ behaves like a hydrogen pump during dehydrogenation to induce decomposition of MgH$_2$.

Comparisons of 24h ball milled LiH+MgB$_2$ mixture with and without Mn or V
Pore size distributions of CAs from 4 to 12 nm

Confining LiBH$_4$ to CA pores eliminates long range microstructural growth

Solvent infiltration provides good control of the size of LiBH$_4$

Low concentrations for LiBH$_4$ in THF (0.5 M)
Technical Accomplishments and Progress (FY09)

Improving Kinetics and Thermodynamics via Nanoengineering – Carbon Aerogel Confinement (Cont.)

As Received CA

THF Solvent

THF infiltrated CA

No H₂ Released by CA or THF
Improving Kinetics and Thermodynamics via Nanoengineering – Carbon Aerogel Confinement (Cont.)

- 0.5 M LiBH₄ in THF
- Evacuate CA
- Submerge in solution
- Pressurize
- Drain and vacuum dry (RT)
- 0.5 M in a 5 nm pore
 → <1 nm LiBH₄ particle
- LiBH₄ released H₂ at 80°C!
- Completed H₂ release at 275°C!
- Change the thermodynamic properties?

![Graph showing temperature, weight loss, and intensity over time.](image)

- Temperature
- Weight loss
- H₂ @ 80°C
- 165°C
- 275°C

![Graph showing mass loss over time.](image)

- Mass [%]
- Time [min]
Properties of Carbon Aerogels (CAs) before and after LiBH$_4$ infiltration and evaporation of the solvent under vacuum

<table>
<thead>
<tr>
<th></th>
<th>Mass of the material (g)</th>
<th>Mass increase (%)</th>
<th>Specific surface area (m2/g)</th>
<th>Pore volume (cm3/g)</th>
<th>Peak pore diameter (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA before infiltration and drying*</td>
<td>0.0464</td>
<td>-</td>
<td>558.3</td>
<td>1.46</td>
<td>10.03</td>
</tr>
<tr>
<td>CA after infiltration and drying</td>
<td>0.0543</td>
<td>17 wt%</td>
<td>376.2</td>
<td>1.17</td>
<td>8.52</td>
</tr>
</tbody>
</table>

Infiltration of LiBH$_4$ into CAs results in a 17% weight gain and simultaneous decreases in the specific surface area, pore volume and peak pore diameter. Based on the peak pore diameter change, the thickness of LiBH$_4$ film or the particle diameter is ~ 0.75 nm.
Collaborations

- Pacific Northwest National Laboratory (Drs. Z. Gary Yang, Jianzhi Hu, and Ja-Hu Kwak within the DOE H₂ Program) – Extensive NMR analysis of hydrogen storage properties with the following joint publications.

Collaborations (Cont.)

• HRL Laboratories (Dr. John Vajo within the DOE H₂ Program) – Ball milling of LiBH₄ + MgH₂ at both RT and liquid N₂ temperature to investigate whether MgB₂ can be formed below the melting temperature of LiBH₄.

• Universidad de Extremadura, Badajoz, Spain (Prof. Angel L. Ortiz outside the DOE H₂ Program) – Detailed XRD analysis of hydrogen storage properties with the following joint publications.

• University of Pittsburgh (Prof. Karl Johnson within the DOE H₂ Program) – Information exchange on the prediction of the first-principles calculations.
Proposed Future Work

- Quantify the storage capacity of carbon aerogel-confined LiBH₄ and investigate its hydriding and dehydriding reversibility.

- Increase the storage capacity of carbon aerogel-confined LiBH₄ through high loading of LiBH₄ in carbon aerogels and study the relationship between the LiBH₄ loading and the kinetics of hydriding and dehydriding processes.

- Investigate the effect of Sc and Al addition to ball milled LiH + MgB₂ mixtures on their hydriding and dehydriding properties.

- Enhance the hydriding and dehydriding properties of ball milled LiH + MgB₂ mixtures through boron nitride addition.

- Liquid N₂ temperature ball milling of LiBH₄ + MgH₂ to promote hydrogen release at low temperatures.
Project Summary

Relevance: Explore fundamental mechanisms related to mechanical activation and nano-engineering necessary for improving kinetics of reversible hydrogen storage materials.

Approach: Investigate hydriding/dehydriding properties of LiBH₄+MgH₂ materials with different degrees of mechanical activation and nano-engineering; Enhance the storage performance based on the understanding developed.

Technical Accomplishments: (i) Demonstrated hydriding and dehydriding reactions of LiBH₄ + MgH₂ systems at the solid state, i.e., below the melting point of LiBH₄ (Tₘ = 280°C) with 9.3 wt% H₂ uptake and 4.5 wt% H₂ release; (ii) Enhanced hydriding and dehydriding kinetics via milling additives and doping of transition metals; (iii) Further improvement via liquid nitrogen temperature ball milling; (iv) Identify the solid-state hydriding and dehydriding mechanisms and established a partial ion exchange model to guide the improvement of the diffusion-controlled hydriding dehydriding reaction; and (v) Demonstrated the release of H₂ from LiBH₄ at 80°C and the completion of H₂ release at 275°C via nano-engineering with carbon aerogel confinement.