Fundamental Reactivity Testing and Analysis of Hydrogen Storage Materials

J. Gray, C. James, D. Tamburello, K. Brinkman, B. Hardy and D. Anton

Savannah River National Laboratory

May 20, 2009
Overview

Timeline

- Start: 10/1/05
- End: 9/30/10
- Percent complete: 66%

Budget

- Funding received in FY08
 - $500K
- Planned Funding for FY09
 - $400K

Barriers Addressed

F. Codes and Standards

P. Understanding of Hydrogen Physisorption & Chemisorption

Q. Reproducibility of Performance

Partners

- M. Fichtner, Forschungszentrum Karlsruhe, Germany
- N. Kuriyama, National Institute for Advanced Industrial Science and Technology, Japan
- R. Chahine, Université du Québec à Trois-Rivières, Canada
- D. Mosher, United Tech. Res. Ctr., USA
- D. Dedrick, Sandia NL, USA
The objectives of this study are to understand the safety issues regarding solid state hydrogen storage systems through:

• Development & implementation of internationally recognized standard testing techniques to quantitatively evaluate both materials and systems.

• Determine the fundamental thermodynamics & chemical kinetics of environmental reactivity of hydrides.

• Build a predictive capability to determine probable outcomes of hypothetical accident events.

• Develop amelioration methods and systems to mitigate the risks of using these systems to acceptable levels.
<table>
<thead>
<tr>
<th>Task Plan</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk Assessment and Standardized Test Development</td>
<td>Chemical Kinetics & Thermodynamics Measurements</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Numerical Simulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk Mitigation</td>
<td>Mitigation strategies are being developed based on experimental and numerical results</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Numerical Simulation is being built on top of the existing experimental work</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Program began with standardized testing and calorimetric analysis</td>
<td></td>
</tr>
</tbody>
</table>
Materials Test Plan

- All three major classes of condensed hydrogen storage materials are being studied:
 1. metal hydrides
 2. chemical hydrides
 3. adsorbents
- The priority of materials to be analyzed is being conducted in consultation with the three Materials CoE’s and DoE.
- Tested:
 - 2LiBH₄·MgH₂
 - NH₃BH₃
- Investigating:
 - activated carbon, AX-21
 - AlH₃
Material Standardized Testing (DE-FC36-02AL67610)

- **Flammability**
 - Flammability Test
 - Spontaneous Ignition
 - Burn Rate

- **Water Contact**
 - Immersion
 - Surface Exposure
 - Water Drop
 - Water Injection
NH₃BH₃ Self-Heating Results

- Fill 25x25x25 mm sample holder with material
- Sample holder pre-fitted with micro thermocouples
- Heat sample to 150°C
- Observe temperature within sample spatially resolved to determine if self-heating occurs

- Sample begins to self-heat after about 11 minutes
 - Time at set-point = 5 min
- Temperature spiked as material combusted
 - Green flames observed from oven door
- Maximum Temperature observed = 439°C
NH₃BH₃ Self-Heating & Burn Rate

• NH₃BH₃ expanded through mesh. Inspection of interior sample container reveals no damage after debris is removed.

• Burn rate = 33.3 mm/sec
 • 37% slower than the burn rate measured for
 • NaAlH₄ (51 mm/sec)
 • 2LiBH₄·MgH₂ (52 mm/sec)
<table>
<thead>
<tr>
<th>Material / UN Test</th>
<th>State</th>
<th>Pyrophoricity</th>
<th>Self-Heat</th>
<th>Burn Rate</th>
<th>Water Drop</th>
<th>Surface Contact</th>
<th>Water Immersion</th>
</tr>
</thead>
<tbody>
<tr>
<td>2LiBH$_4$·MgH$_2$</td>
<td>C</td>
<td>No ignition event. Hygroscopic material absorbed H$_2$O from air.</td>
<td>Self-heated \sim300 °C within 5 min at as $T_{oven} = 150$ °C is approached.</td>
<td>Flame propagated in 5 sec with burn rate of 52 mm/sec.</td>
<td>2 H$_2$O drops required for near-instant ignition.</td>
<td>Material ignited</td>
<td>No ignition event recorded. Gas evolved at longer times. (5 min)</td>
</tr>
<tr>
<td>SRNL</td>
<td>D</td>
<td>Not tested</td>
<td>Not tested</td>
<td>Not tested</td>
<td>1 H$_2$O drop required for near-instant ignition</td>
<td>Reaction observed with no flame</td>
<td>Reaction observed with no flame</td>
</tr>
<tr>
<td>NH$_3$BH$_3$</td>
<td>C</td>
<td>No ignition event. Hygroscopic material absorbed H$_2$O from air.</td>
<td>Self-heated \sim300 °C within 10 min, 5 min at $T_{oven} = 150$ °C</td>
<td>Flame propagated in 6 sec with burn rate of 33 mm/sec</td>
<td>No reactivity detected</td>
<td>No ignition event recorded. Gas evolved at longer times. (5 min)</td>
<td>No reactivity detected</td>
</tr>
<tr>
<td>SRNL</td>
<td>D</td>
<td>Not tested</td>
<td>Not tested</td>
<td>Not tested</td>
<td>No reaction</td>
<td>No reaction</td>
<td>No reaction</td>
</tr>
<tr>
<td>3Mg(NH$_2$)$_2$·8LiH</td>
<td>C</td>
<td>Ignition event recorded in room temp experiment</td>
<td>Material failed pyrophoricity test</td>
<td>Flame Propagates at 463 mm/sec</td>
<td>Not tested</td>
<td>Material ignited</td>
<td>Not tested</td>
</tr>
<tr>
<td>AIST</td>
<td>D</td>
<td>Ignition event recorded in room temp experiment</td>
<td>Material failed pyrophoricity test</td>
<td>Not tested</td>
<td>Not tested</td>
<td>Not tested</td>
<td>Material ignited</td>
</tr>
</tbody>
</table>
Thermo-Chemical Analysis of Water Contact

Liquid Mixing Cell

- Water Drop (~ 1 mL)
- Teflon® Membrane
- Sample (5-20 mg)

Gas Flow Cell

- Gas Inlet
- Gas Outlet

Gas Inlet is a function of:
- Dry Air/Argon
- Air/Argon with water vapor
- Temperature

Sample (5-20 mg)
NH$_3$BH$_3$ Water Vapor Calorimetry

Experiment
- Argon gas flow with 30% RH at 40°C

Result
- Small exothermic reaction probably due to water absorption

XRD of crystalline products revealed water vapor does not alter the NH$_3$BH$_3$
NH₃BH₃ Water Calorimetry

- **Liquid Phase Calorimetry**

 Expect:
 \[\text{NH₃BH₃} + 2\text{H₂O} \rightarrow \text{BO}_2^- (\text{a}) + \text{NH}_4^+ (\text{a}) + 3\text{H}_2(\text{g}) \]
 \[\Delta H = -222 \text{ kJ/mol exotherm at 40°C} \]

 Result:
 \[\text{NH₃BH₃} + \text{H₂O} = \text{NH₃BH₃} (\text{a}) \]
 (dissolved, but solvated or ionic?)
 \[\Delta H = 17 \text{kJ/mol endothermic at 40°C} \]

 XRD analysis of crystalline products revealed only starting NH₃BH₃ material present after drying dissolved NH₃BH₃ + H₂O solution
8LiH+3Mg(NH$_2$)$_2$ Calorimetry

8LiH+3Mg(NH$_2$)$_2$ \rightarrow Mg$_3$N$_2$+4Li$_2$NH+8H$_2$
7wt% H$_2$ 140<T<200°C
Nakagawa et. al., 2007

8LiH+3Mg(NH$_2$)$_2$
Material received from N. Kuriyama, AIST
Liquid water hydrolysis calorimetry at 40°C

- Bulk of heat released within 15 min.
- XRD analysis of crystalline products revealed Mg(OH)$_2$ and Li$_2$CO$_3$ from atmospheric CO$_2$
8LiH:3Mg(NH₂)₂

- Gas Phase Calorimetry

Air \(\Delta H = 171 \text{ kJ/mol} \)

Argon \(\Delta H = 165 \text{ kJ/mol} \)

Enthalpy of reaction similar and final products the same with humid Ar or Air; Hydrolysis in the presence of air proceeded quicker.

XRD analysis of crystalline products same in Ar and Air humid atmosphere at 40°C: Mg(OH)₂ and LiOH·H₂O

*Mg(OH)₂

#LiOH·H₂O
Modeling Overview

• A very large number of experiments would be required to investigate all hypothetical accident scenarios and subtle variations
 • Accident scenarios are complex & have many potential variations

• Use simplified models (numerical or correlation based) that bracket potentially hazardous scenarios
 • Can also be used to suggest / verify concepts for mitigation

• Parameters & mechanisms governing metal hydride combustion are not well known
 • Need to determine physical mechanisms controlling media-environment interactions
 • Need experiments to identify important physical mechanisms that must be incorporated into models

• Objectives
 • Identify those scenarios most likely to result in hydride ignition
 • Obtain an initial idea of mechanisms that precede onset of hydride ignition
 • Identify the magnitude of mitigation required to minimize ignition probability
Accident Scenario: Storage system ruptured and media expelled to environment in either dry, humid or rain conditions.

Risk: Under what conditions will the expelled media ignite?

Temperature
Humidity
Water presence
Media geometry

Media Temperature Depends on T_a, T_i, dH/dt, k_{eff}, c_{peff}, ...

Heat Generated by Chemical Reaction Volume

Possible Water Film

Ambient Atmosphere at Temperature Contains O_2, N_2, CO_2 & H_2O_l, H_2O_g

Liquid Water

Surface

x

y

H$_2$

Spilled Media

Penetration

Storage Vessel

Punctured / Ruptured Tank
Governing Equations

Mass Balance (Gasses)
\[
\frac{\partial c_i}{\partial t} + \nabla \cdot (c_i \vec{v}) = S_i
\]

Fluid Motion
\[
\frac{\partial}{\partial t} (\rho \vec{v}) + \nabla \cdot (\rho \vec{v} \vec{v}) = -\nabla p + \nabla \cdot (\tau) + p \vec{g} + \vec{F}
\]
\[
\tau = \mu \left[(\nabla \vec{v} + \nabla \vec{v}^T) - \frac{2}{3} \nabla \cdot \vec{v} I \right]
\]

Relation Between Pressure Gradient and Mass Averaged Gas Velocity (Blake-Kozeny Equation)
\[
\vec{v} = -\frac{D_p}{150 \mu (1 - \varepsilon)^2} \nabla P
\]

Energy Balance
\[
(1 - \varepsilon)\rho \frac{\partial T}{\partial t} - \nabla \cdot \kappa \nabla T = -\varepsilon \rho C_p,\text{ Solid} \left(\frac{\partial T}{\partial t} + \vec{v} \cdot \nabla T \right) + \frac{1}{T_{\text{ref}}} \left(\frac{\partial P}{\partial t} + \varepsilon \vec{v} \cdot \nabla P \right) + \text{Source}
\]

Diffusion Equations (Stefan-Maxwell)
- Could Use Fick’s as Well
\[
\frac{\nabla c_i}{c} = -\sum_{j=1}^{n} \frac{x_i \nu_i (\nu_i - \nu_j)}{D_{ij} / \tau}
\]

Rate Equations
\[
\frac{1}{V} \frac{\partial n_i}{\partial t} |_{\text{Reaction}} = f_i(c_{\text{gas}}, c_{\text{Hyd}}, T, P) \quad \text{Gasses}
\]
\[
\frac{1}{V} \frac{\partial n_{\text{Hyd}, j}}{\partial t} |_{\text{Reaction}} = f_j(c_{\text{gas}}, c_{\text{Hyd}}, T, P) \quad \text{Solids}
\]

Total Gas Concentration
\[
c = \sum_{i=1}^{n} c_i
\]

Gas Pressure
\[
P = cRT \quad \text{Ideal Gas Eqn of State}
\]

Relation Between Gas Concentration and Mass Density
\[
\rho = \sum_{i=1}^{n} M_i c_i
\]

Relation Between Mass Averaged Velocity and Species Velocities
\[
\vec{v} = \sum_{i=1}^{n} \frac{M_i c_i \vec{v}_i}{\rho}
\]

Total Number of Unknowns and Equations are Equal

Closed System
Modeling Approach

• Phase I – Proof of Concept
 • Generic material (estimate properties)
 • Multiple species
 • Assumed heat and mass generation *(no chemical reactions)*
 • Multiple software platforms

• Phase II – Partial Chemical Reactions
 • Approximate chemical reactions within the media
 • Specific materials
 • Calorimetry data
 • Experimental properties

• Phase III – Full Models
 • Accident scenarios
 • More complete chemical reactions
 • Multiple-stage reactions
 • Dynamic boundary conditions

<table>
<thead>
<tr>
<th>Phase Introduced</th>
<th>Parameter Name</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Bed porosity</td>
<td>(\varepsilon)</td>
</tr>
<tr>
<td>I</td>
<td>Mean particle diameter</td>
<td>(D_p)</td>
</tr>
<tr>
<td>I</td>
<td>Solid phase specific heat</td>
<td>(C_p \text{ Solid})</td>
</tr>
<tr>
<td>I</td>
<td>Bed thermal conductivity</td>
<td>(k)</td>
</tr>
<tr>
<td>I</td>
<td>Particle mass density of bed</td>
<td>(\rho_{\text{Solid}})</td>
</tr>
<tr>
<td>I</td>
<td>Heats of reaction</td>
<td>(\Delta H_{Rxn})</td>
</tr>
<tr>
<td>II</td>
<td>Gas component kinetics</td>
<td>(\frac{\partial n_i}{\partial t}_{\text{Reaction}})</td>
</tr>
<tr>
<td>II</td>
<td>Solid component kinetics</td>
<td>(\frac{\partial n_{\text{Hyd}}}{\partial t}_{\text{Reaction}})</td>
</tr>
<tr>
<td>III</td>
<td>Bed tortuosity factor</td>
<td>(\tau)</td>
</tr>
<tr>
<td>III</td>
<td>Wetted interface velocity</td>
<td>(v_{\text{wet}})</td>
</tr>
</tbody>
</table>
Phase I Model (Assumed Heat & Mass Generation Rates)

FLUENT model:
- 2-D axisymmetric
- Double-precision
- Pressure-based, 2nd-order implicit, unsteady formulation
- Laminar Viscosity
- Heat transfer and Species models enabled

Material Properties – porous NaAlH\textsubscript{4}:
- Porosity (ε) = 0.5
- Particle Diameter (D_p) = 3.7x10-6 m
- Density (ρ) = 720 kg/m3
- Thermal conductivity (k) = 0.325 W/m-K
- Specific heat (C_p) = 820 J/kg-K
- Heat Generation ≤ 40,000 J/mol
 (overall heat of reaction for NaAlH\textsubscript{4} from NaH)
- Mass Generation ≤ 0.5 kg H\textsubscript{2}/m3-s
 (loading based on DOE 2010 Technical Target)

Initial conditions:
- Dry air @ 1 atm & 298 K
- Dry air mass fraction is 80% N\textsubscript{2}, 20% O\textsubscript{2}

Grid Information:
- 26,700 elements; 26,400 nodes
- Fixed sizing function: 0.25mm to 2.5mm with a growth rate of 1.02

![Diagram showing grid information and boundary conditions](image)
Phase I Model Accident Scenarios

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Description</th>
<th>Generation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Bottom only</td>
<td>Material on wet surface in dry air</td>
<td>Sources B and C:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heat Generation = 40,000 J/mol</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mass Generation = 0.5 kg H₂/m³-s</td>
</tr>
<tr>
<td>2. Top only</td>
<td>Material on a dry surface with the pile exposed to 30% RH air</td>
<td>Sources A and C:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heat Generation = 12,000 J/mol</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mass Generation = 0.15 kg H₂/m³-s</td>
</tr>
<tr>
<td>3. Dual with reduced source</td>
<td>Material on a wet surface with the pile exposed to 30% RH air</td>
<td>Source A:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heat Generation = 12,000 J/mol</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mass Generation = 0.15 kg H₂/m³-s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sources B and C:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heat Generation = 40,000 J/mol</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mass Generation = 0.5 kg H₂/m³-s</td>
</tr>
<tr>
<td>4. Dual with full source</td>
<td>Material on a wet surface in the rain</td>
<td>Sources A, B, and C:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heat Generation = 40,000 J/mol</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mass Generation = 0.5 kg H₂/m³-s</td>
</tr>
</tbody>
</table>

Note: Heat and mass generation sources remain constant throughout the simulations.
Phase I Model Results: H₂ Generation

Flow time = 1.0 seconds

With assumed heat and mass generation…

- The flammability (4% & 75%) and explosive (17% & 56%) limits are marked with solid lines.
- Within the media, the UEL (56%) and UFL (75%) are reached in less than 1 second for scenarios 1, 3, & 4.
- The LFL (4%) is reached in less than 1 second for each scenario.
- The LEL (17%) is reached in less than 1 second for each scenario.
Phase I Model Results: H$_2$ Generation

Flow time = 120 seconds

Scenario 1: Bottom generation

Scenario 2: Top generation

Scenario 3: Dual gen. reduced source

Scenario 4: Dual gen. full source

With assumed heat and mass generation...

- H$_2$ concentrations within the media are lower after 2 minutes than after 1 second.
- The top generation source (scenario 2) allows the H$_2$ to dissipate into the ambient fluid rather than pool within the media.
Phase I Model Results: Temperature

Flow time = 1.0 seconds

- **Scenario 1:** Bottom generation
- **Scenario 2:** Top generation
- **Scenario 3:** Dual gen. reduced source
- **Scenario 4:** Dual gen. full source

With assumed heat and mass generation...

- **Bottom generation** (scenarios 1, 3, & 4) sustains heat accumulation within the media.
- **Top generation** (scenario 2) promotes heat dissipation from the media.
Phase I Model Results: Temperature

Flow time = 120 seconds

Scenario 1: Bottom generation
Scenario 2: Top generation
Scenario 3: Dual gen. reduced source
Scenario 4: Dual gen. full source

With assumed heat and mass generation...

- The auto ignition temperature for H₂ (ranges from 500 to 571°C) is marked by solid black lines.

- **Bottom generation (scenarios 1, 3, &4) reaches the auto ignition temperature within the media after:**
 - 42 seconds – Scenario 1
 - 41 seconds – Scenario 3
 - 37 seconds – Scenario 4

- Dual generation with full sources (scenario 4) reaches the auto ignition temperature in the fluid space above the media.
Modeling Development

- **Phase I – Proof of Concept**
 - Alter material property estimates
 - Alter heat and mass generation rates
 - Multiple software platforms

- **Phase II – Partial Chemical Reactions**
 - Approximate chemical reactions within the media
 - Specific materials
 - Calorimetry data
 - Experimental properties
 - Add chemical reaction approximations to the media (based on calorimetry data)

- **Phase III – Full Models**
 - Accident scenarios
 - More complete chemical reactions
 - Multiple-stage reactions
 - Dynamic boundary conditions
 - Add water vapor and other species to the model calculation
 - Account for permeation and changes in generation location within the media
 - Test additional model scenarios
 - Explore additional software platforms
 - Alter the model to account for the rate of reaction, changes in generation rate, etc.
 - Update material properties (based on experimental data)
Risk Mitigation Strategies

- Passive neutralization methods are of primary interest
 - Activate when hydride release occurs
- Preliminary system mitigation strategies have been identified
- Tests are being outlined to determine efficacy of strategies
- Invention disclosure on passive neutralization of hydrides has been filed with SRNL
Summary

- Standardized UN tests hazards analysis tests completed on 2LiBH$_4$·MgH$_2$ and NH$_3$BH$_3$ in the fully charged state
- Water contact completed in charged and discharged states
- Calorimetric characterization of NH$_3$BH$_3$ completed
- Mitigation strategy invention disclosure filed
- Modeling effort initiated to develop predictive capabilities for environmental exposure and reactivity scenarios
Proposed Future Work

• Conduct standardized testing of activated carbon and AlH₃ as decided in consultation with the Centers of Excellence

• Continue the thermodynamic and kinetic testing with AlH₃ and LiH:Mg(NH₂)₂ to feed information into the numerical simulations

• Continue modeling effort to Phases II and III to render predictive capabilities

• Evaluate mitigation strategies utilizing calorimetry and modified U.N. Tests