June 7-11, 2010
Washington, DC

Hydrogen Program

2010 Annual Merit Review and Peer Evaluation Report

DOE/GO-102010-3144
December 2010
About the Cover

Photo collage (from top to bottom, left to right):

Portable fuel-cell-powered charger. Photo courtesy of MTI Micro Fuel Cells (NREL PIX 17982.)

Webline manufacturing of fuel cell membranes. Photo courtesy of BASF Fuel Cell, Inc. (NREL PIX 17983.)

DF-STEM image of platinum-gold fuel cell catalysts. Image courtesy of Oak Ridge National Laboratory.

STEM image of platinum on carbon supports. Image courtesy of Oak Ridge National Laboratory.

Thermal model during charging of a section of a hydrogen storage bed using a metallic honeycomb structure. Image courtesy of Savannah River National Laboratory.

High-pressure hydrogen refueler tank truck. Photo courtesy of Energetics, Inc. (NREL PIX 17985).

Back-up power from fuel cells. Photo courtesy of ReliOn (NREL PIX 17984).

Photo on right:

DOE Hydrogen Program

2010 Annual Merit Review and Peer Evaluation Report

June 7-11, 2010
Washington, D.C.
NOTICE

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

Available electronically at http://www.osti.gov/bridge

Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from:
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
phone: 865.576.8401
fax: 865.576.5728
email: reports@adonis.osti.gov

Available for sale to the public, in paper, from:
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
phone: 800.553.6847
fax: 703.605.6900
email: orders@ntis.fedworld.gov
online ordering: http://www.ntis.gov/ordering.htm
TABLE OF CONTENTS

INTRODUCTION 1

HYDROGEN PRODUCTION AND DELIVERY 9

PD-02 Biomass-Derived Liquids Distributed (Aqueous Phase) Reforming .. 12
PD-03 Hydrogen from Glycerol: A Feasibility Study ... 16
PD-04 Distributed Bio-Oil Reforming .. 19
PD-05 High Performance, Durable, Palladium Alloy Membrane for Hydrogen Separation and Purification 22
PD-06 A Novel Slurry Based Biomass Reforming Process .. 26
PD-07 Composite Pd and Alloy Porous Stainless Steel Membranes for Hydrogen Production and Process Intensification 30
PD-08 Development of Robust Hydrogen Separation Membranes .. 34
PD-09 Scale-Up of Hydrogen Transport Membranes for IGCC and FutureGen Plants .. 38
PD-10 Amorphous Alloy Membranes for High Temperature Hydrogen Separations .. 42
PD-11 Experimental Demonstration of Advanced Palladium Membrane Separators for Central High-Purity Hydrogen Production 46
PD-12 Supported Molten-Metal Membrane (SMMM) for Hydrogen Separation .. 50
PD-13 R&D Status for the Cu-Cl Thermochemical Cycle-2010 ... 53
PD-14 Hydrogen Delivery Infrastructure Analysis ... 57
PD-15 H2A Delivery Analysis and H2A Delivery Components Model ... 60
PD-16 Oil-Free Centrifugal Hydrogen Compression Technology Demonstration ... 63
PD-17 Development of a Centrifugal Hydrogen Pipeline Gas Compressor .. 67
PD-18 Advanced Hydrogen Liquefaction Process .. 69
PD-19 Active Magnetic Regenerative Liquefier ... 73
PD-20 Inexpensive Delivery of Cold Hydrogen in Glass Fiber Composite Pressure Vessels .. 76
PD-21 Development of High Pressure Hydrogen Storage Tank for Storage and Gaseous Truck Delivery ... 80
PD-22 Fiber Reinforced Composite Pipelines ... 83
PD-23 A Combined Materials Science/Mechanics Approach to the Study of Hydrogen Embrittlement of Pipeline Steels 86
PD-24 Composite Technology for Hydrogen Pipelines .. 89
PD-25 Hydrogen Embrittlement of Structural Steels .. 92
PD-26 Innovative Hydrogen Liquefaction Cycle .. 95
PD-27 Solar High-Temperature Water Splitting Cycle with Quantum Boost ... 97
PD-28 Solar-Thermal ALD Ferrite-Based Water Splitting Cycles ... 101
PD-29 High-Capacity, High Pressure Electrolysis System with Renewable Power Sources .. 104
PD-30 PEM Electrolyzer Incorporating an Advanced Low Cost Membrane .. 108
PD-31 Renewable Electrolysis Integrated System Development and Testing .. 111
PD-32 Photocatalytic Hydrogen Production: DOE PEC Working Group Overview ... 115
PD-33 Nanostructured MoS2 and WS2 for the Solar Production of Hydrogen .. 117
PD-34 Development and Optimization of Cost Effective Material Systems for Photocatalytic Hydrogen Production 119
PD-35 Semiconductor Materials for Photoelectrolysis .. 122
PD-36 Maximizing Light Utilization Efficiency and Hydrogen Production in Microalgal Cultures ... 124
PD-37 Biological Systems for Hydrogen Photoproduction .. 127
PD-38 Fermentation and Electrocatalytic Approaches to Hydrogen Production .. 131
PD-39 Hydrogen from Water in a Novel Recombinant Oxygen-Tolerant Cyanobacterial System .. 135
PD-42 Catalytic Solubilization and Conversion of Lignocellulosic Feedstocks .. 139
PD-45 Distributed Reforming of Renewable Liquids Using Oxygen Transport Membranes ... 142
PD-46 Reversible Liquid Carriers for an Integrated Production, Storage and Delivery of Hydrogen .. 145
PD-47 Materials Solutions for Hydrogen Delivery in Pipelines .. 148
PD-48 Development of Highly Efficient Solid State Electrochemical Hydrogen Compressor (EHC) ... 151
PD-51 Characterization of Materials for Photoelectrochemical Hydrogen Production (PEC) ... 155

FY 2010 Merit Review and Peer Evaluation Report
TABLE OF CONTENTS

PD-52 PEC Materials: Theory and Modeling..157
PD-53 Photoelectrochemical Hydrogen Production: Progress in the Study of Amorphous Silicon
Carbide (a-SiC) as a Photoelectrode in Photoelectrochemical (PEC) Cells159
PD-54 Progress in the Study of Tungsten Oxide Compounds as Photoelectrodes in
Photoelectrochemical Cells ..161
PD-55 Progress in the Study of Copper Chalcopyrites as Photoelectrodes in
Photoelectrochemical Cells ..163
PD-56 Critical Research for Cost-Effective Photoelectrochemical Production of Hydrogen166
PD-58 Characterization and Optimization of Photoelectrode Surfaces for Solar-to-
Chemical Fuel Conversion ..168

HYDROGEN STORAGE ...171

ST-01 System Level Analysis of Hydrogen Storage Options174
ST-02 Analyses of Hydrogen Storage Materials and On-Board Systems178
ST-03 Compact (L)H2 Storage with Extended Dormancy in Cryogenic Pressure Vessels183
ST-04 Hydrogen Storage Engineering Center of Excellence188
ST-05 Systems Engineering of Chemical Hydride, Pressure Vessel, and Balance of Plant for
On-Board Hydrogen Storage ...194
ST-06 Advancement of Systems Designs and Key Engineering Technologies for Materials
Based Hydrogen Storage ..198
ST-07 Chemical Hydride Rate Modeling, Validation, and System Demonstration202
ST-08 System Design, Analysis, Modeling, and Media Engineering Properties for
Hydrogen Energy Storage ...205
ST-09 System Design and Media Structuring for On-Board Hydrogen Storage Technologies210
ST-10 Ford/BASF-SE/UM-Activities in Support of the Hydrogen Storage Engineering
Center of Excellence ...214
ST-11 Fundamental Reactivity Testing and Analysis of Hydrogen Storage Materials218
ST-12 Quantifying & Addressing the DOE Material Reactivity Requirements with Analysis
& Testing of Hydrogen Storage Materials & Systems ...223
ST-19 Multiply Surface-Functionalized Nanoporous Carbon for Vehicular Hydrogen Storage235
ST-21 NREL Research as Part of the Hydrogen Sorption Center of Excellence239
ST-22 A Joint Theory and Experimental Project in the Synthesis and Testing of Porous
COFs for On-Board Vehicular Hydrogen Storage ...242
ST-23 New Carbon Based Porous Materials with Increased Heats of Adsorption
for Hydrogen Storage ...246
ST-24 Hydrogen Trapping through Designer Hydrogen Spillover Molecules with
Reversible Temperature and Pressure-Induced Switching250
ST-25 Polymer-Based Activated Carbon Nanostructures for H2 Storage255
ST-26 Capacitive Hydrogen Storage Systems: Molecular Design of Structured Dielectrics259
Polymer Templates ..263
ST-28 Design of Novel Multi-Component Metal Hydride-Based Mixtures for Hydrogen Storage268
ST-31 Advanced, High-Capacity Reversible Metal Hydrides273
ST-32 Lightweight Metal Hydrides for Hydrogen Storage ...277
ST-38 Hydrogen Storage by Novel CBN Heterocycle Materials281
ST-40 Chemical Hydrogen Storage R&D at Los Alamos National Laboratory283
ST-41 PNNL Progress as Part of the Chemical Hydrogen Storage Center of Excellence286
ST-44 SRNL Technical Work Scope for the Hydrogen Storage Engineering Center of Excellence:
Design and Testing of Metal Hydride and Adsorbent Systems290
ST-45 Key Technologies, Thermal Management, and Prototype Testing for Advanced Solid-State
Hydrogen Storage Systems ..293
ST-47 Development of Improved Composite Pressure Vessels for Hydrogen Storage300
ST-48 Hydrogen Storage Materials for Fuel Cell Powered Vehicles .. 303
ST-49 Hydrogen Storage in Metal-Organic Frameworks ... 307
ST-50 Hydrogen Storage through Nanostructured Porous Organic Polymers (POPs) 310
ST-51 Electron-Charged Hydrogen Storage Materials .. 314
ST-52 Lifecycle Verification of Polymeric Storage Liners .. 318
ST-53 Standardized Testing Program for Solid-State Hydrogen Storage Technologies 321
ST-54 NaSi and Na-SG Powder Hydrogen Fuel Cells .. 324
ST-92 SRNL Technical Work Scope for the Hydrogen Storage Engineering Center of Excellence: Design and Testing of Metal Hydride and Adsorbent Systems .. 327
ST-93 High Strength Carbon Fibers ... 331

ST-55 Lifetime Limitations: The Role of FC-13 Durability Improvements through Degradation Mechanism Studies .. 388
ST-56 Improved Accelerated Stress Tests (ASTs) Based on Real World FCV Data 396
ST-57 Durability of Low Platinum Fuel Cells Operating at High Power Density 392
ST-58 Molecular-scale, Three-dimensional Non-Platinum Group Metal Electrodes 376
ST-59 The Science and Engineering of Durable Ultralow PGM Catalysts 371
ST-60 Advanced Cathode Catalysts for PEM Fuel Cells .. 347
ST-61 Highly Dispersed Alloy Catalyst for Durability .. 344
ST-62 Development of Alternative and Durable High Performance Cathode Supports for PEM Fuel Cells .. 357
ST-63 Non-Platinum Bimetallic Cathode Electrocatalysts ... 352
ST-64 Advanced Cathode Catalysts ... 350
ST-65 Durable Catalysts for Fuel Cell Protection During Transient Conditions 361
ST-66 Extended, Continuous Pt Nanostructures in Thick, Dispersed Electrodes 365
ST-67 Nanosegregated Cathode Catalysts with Ultra-Low Platinum Loading 368
ST-68 Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts on High-Stability-Low-Cost Supports ... 371
ST-69 The Science and Engineering of Durable Ultralow PGM Catalysts 371
ST-70 Molecular-scale, Three-dimensional Non-Platinum Group Metal Electrodes 371
ST-71 for Catalysis of Fuel Cell Reactions .. 380
ST-72 Polymer Electrolyte Fuel Cell Lifetime Limitations: The Role of Electrocatalyst Degradation ... 384
ST-73 Durability Improvements through Degradation Mechanism Studies 388
ST-74 Durability of Low Platinum Fuel Cells Operating at High Power Density 392
ST-75 Improved Accelerated Stress Tests (ASTs) Based on Real World FCV Data 396
ST-76 Extended, Continuous Pt Nanostructures in Thick, Dispersed Electrodes 365
ST-77 Nanosegregated Cathode Catalysts with Ultra-Low Platinum Loading 368
ST-78 Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts on High-Stability-Low-Cost Supports ... 371
ST-79 The Science and Engineering of Durable Ultralow PGM Catalysts 371
ST-80 Molecular-scale, Three-dimensional Non-Platinum Group Metal Electrodes 371
ST-81 for Catalysis of Fuel Cell Reactions .. 380

FC-01 Advanced Cathode Catalysts and Supports for PEM Fuel Cells 339
FC-02 Highly Dispersed Alloy Catalyst for Durability .. 344
FC-03 Development of Alternative and Durable High Performance Cathode Supports for PEM Fuel Cells .. 357
FC-04 Non-Platinum Bimetallic Cathode Electrocatalysts ... 352
FC-05 Advanced Cathode Catalysts ... 350
FC-06 Durable Catalysts for Fuel Cell Protection During Transient Conditions 361
FC-07 Extended, Continuous Pt Nanostructures in Thick, Dispersed Electrodes 365
FC-08 Nanosegregated Cathode Catalysts with Ultra-Low Platinum Loading 368
FC-09 Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts on High-Stability-Low-Cost Supports ... 371
FC-10 The Science and Engineering of Durable Ultralow PGM Catalysts 371
FC-11 Molecular-scale, Three-dimensional Non-Platinum Group Metal Electrodes 371
FC-12 Polymer Electrolyte Fuel Cell Lifetime Limitations: The Role of Electrocatalyst Degradation ... 384
FC-13 Durability Improvements through Degradation Mechanism Studies 388
FC-14 Durability of Low Platinum Fuel Cells Operating at High Power Density 392
FC-15 Improved Accelerated Stress Tests (ASTs) Based on Real World FCV Data 396
FC-16 Accelerated Testing Validation ... 401
FC-17 Fuel Cells Systems Analysis ... 404
FC-18 Mass-Production Cost Estimation for Automotive Fuel Cell Systems 408
FC-19 Direct Hydrogen PEM fuel cell Manufacturing Cost Estimation for Automotive Applications .. 411
FC-20 Microstructural Characterization of PEM Fuel Cell Materials 414
FC-21 Neutron Imaging Study of the Water Transport in Operating Fuel Cells 418
FC-22 Nitrided Metallic Bipolar Plates .. 421
FC-23 Low Cost PEM Fuel Cell Metal Bipolar Plates ... 426
FC-24 Metallic Bipolar Plates with Composite Coatings .. 430
FC-25 Air-Cooled Stack Freeze Tolerance .. 434
FC-26 Fuel-Cell Fundamentals at Low and Subzero Temperatures ... 438
FC-27 Development and Validation of a Two-phase, Three-dimensional Model for PEM Fuel Cells ... 441
FC-28 Transport Studies Enabling Efficiency Optimization of Cost-Competitive Fuel Cell Stacks ... 444
FC-29 Water Transport Exploratory Studies ... 447
FC-30 Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization ... 452
FC-31 Development and Demonstration of a New Generation High Efficiency 10kW Stationary PEM Fuel Cell System ... 456
FC-32 Development of a Low Cost 3-10kW Tubular SOFC Power System 461
FC-33 New Polyelectrolyte Materials for High Temperature Fuel Cells 465
FC-34 Membranes and MEAs for Dry, Hot Operating Conditions .. 470
TABLE OF CONTENTS

FC-35	Lead Research and Development Activity for DOE's High Temperature, Low Relative Humidity Membrane Program	474
FC-36	Dimensionally Stable Membranes	479
FC-37	Rigid Rod Polyelectrolytes: Effect on Physical Properties Frozen-in Free Volume: High Conductivity at Low RH	483
FC-38	NanoCapillary Network Proton Conducting Membranes for High Temperature Hydrogen/Air Fuel Cells	486
FC-39	Novel Approaches to Immobilized Heteropoly Acid (HPA) Systems for High Temperature, Low Relative Humidity Polymer Type Membranes	491
FC-40	High Temperature Membrane with Humidification-Independent Cluster Structure	494
FC-41	Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts	498
FC-42	Advanced Materials for RSOFC Dual Operation with Low Degradation	503
FC-43	Resonance-Stabilized Anion Exchange Polymer Electrolytes	506
FC-44	Engineered Nano-scale Ceramic Supports for PEM Fuel Cells	510
FC-45	Effects of Fuel and Air Impurities on PEM Fuel Cell Performance	514
FC-46	Effects of Impurities on Fuel Cell Performance and Durability	517
FC-47	The Effects of Impurities on Fuel Cell Performance and Durability	521
FC-48	Effect of System and Air Contaminants on PEMFC Performance and Durability	525
FC-50	Economic Analysis of Stationary PEM Fuel Cell Systems	527
FC-51	Fuel Cell Testing at the Argonne Fuel Cell Test Facility	530
FC-52	Technical Assistance to Developers	533
FC-59	Improved, Low Cost, Durable Fuel Cell Membranes	535
FC-60	Protic Salt Polymer Membranes: High Temperature Water –Free Proton-Conducting Membranes	539
FC-76	Biomass Fuel Cell Systems	543
FC-77	Fuel Cell Coolant Optimization and Scale-up	547

MANUFACTURING

MN-01	Fuel Cell MEA Manufacturing R&D	551
MN-02	Reduction in Fabrication Costs of Gas Diffusion Layers	553
MN-03	Modular, High-Volume Fuel Cell Leak-Test Suite and Process	556
MN-04	Manufacturing of Low-Cost, Durable Membrane Electrode Assemblies Engineered for Rapid Conditioning	559
MN-05	Adaptive Process Controls and Ultrasonics for High Temperature PEM MEA Manufacture	562
MN-06	Metrology for Fuel Cell Manufacturing	565
MN-07	High Speed, Low Cost Fabrication of Gas Diffusion Electrodes for Membrane Electrode Assemblies	568
MN-08	Development of Advanced Manufacturing Technologies for Low Cost Hydrogen Storage Vessels	571

TECHNOLOGY VALIDATION

TV-01	Controlled Hydrogen Fleet and Infrastructure Analysis	577
TV-04	Hydrogen to the Highways	580
TV-05	Hydrogen Vehicle and Infrastructure Demonstration and Validation	584
TV-06	Validation of an Integrated Hydrogen Energy Station	588
TV-07	California Hydrogen Infrastructure Project	592
TV-08	Technology Validation: Fuel Cell Bus Evaluations	596
TV-09	Hawaii Hydrogen Power Park	598
TV-10	Tanadagusix (TDX) Foundation Hydrogen Project/PEV Pr	601
TV-11	Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase	603
TV-12	Florida Hydrogen Initiative	605

SAFETY, CODES AND STANDARDS

| SCS-01 | National Codes and Standards Template | 611 |
| SCS-02 | Component Standard Research and Development | 616 |
TABLE OF CONTENTS

EDUCATION

ED-03 Hydrogen and Fuel Cell Education at California State University, Los Angeles .. 660
ED-04 Hydrogen Energy in Engineering Education (H2E3) .. 663
ED-05 Hydrogen Education Curriculum Path at Michigan Technological University ... 666
ED-06 Hydrogen and Fuel Cell Education Program Concentration ... 668
ED-07 Development of a Renewable Hydrogen Production and Fuel Cell Education Program ... 670
ED-08 Dedicated to the Continued Education, Training and Demonstration of PEM Fuel Cell-Powered Lift Trucks In Real-World Applications .. 672
ED-09 Hydrogen Education in Texas .. 676
ED-10 Development of Hydrogen Education Programs for Government Officials .. 679
ED-11 VA-MD-DC Hydrogen Education for Decision Makers .. 682
ED-12 State and Local Government Partnership ... 685
ED-13 Raising H2 and Fuel Cell Awareness in Ohio .. 686
ED-14 H2L3: Hydrogen Learning for Local Leaders .. 691
ED-15 Hydrogen Education State Partnership Program ... 694

SYSTEMS ANALYSIS

AN-01 Infrastructure Analysis of Early Market Transition of Fuel Cell Vehicles .. 699
AN-02 Analysis of Energy Infrastructures and Potential Impacts from an Emergent Hydrogen Fueling Infrastructure 702
AN-03 Agent-Based Model of the Transition to Hydrogen-Based Personal Transportation: Consumer Adoption and Infrastructure Development Including Combined Hydrogen, Heat, and Power .. 705
AN-04 HyTrans Model: Analyzing the Potential for Stationary Fuel Cells to Augment Hydrogen Availability in the Transition to Hydrogen Vehicles ... 709
AN-05 Biogas Resources Characterization .. 712
AN-06 Cost and GHG Implications of Hydrogen for Energy Storage .. 715
AN-07 Hydrogen and Water: Engineering, Economics and Environment ... 718
AN-08 Analysis of Business Cases with the Fuel Cell Power Mode ... 720
AN-10 Fuel Quality in Fuel Cell Systems .. 724
AN-11 Macro-System Model .. 727
AN-12 Life-Cycle Analysis of Criteria Pollutant Emissions from Stationary Fuel-Cell Systems ... 731
AN-13 CO2 Reduction Benefits Analysis for Fuel Cell Applications .. 734
AN-14 Pathways to Commercial Success: Technologies and Products Supported by the HFCIT Program 737
AN-15 AN-15: Fuel Cell Power Model: Evaluation of CHP and CHHP Applications ... 740
AN-16 Geospatial Analysis of Hydrogen Production Pathways .. 742
AN-17 Recent Developments in the Hydrogen Demand and Resource Assessment (HyDRA) Model ... 744
TABLE OF CONTENTS

AMERICAN RECOVERY AND REINVESTMENT ACT

<table>
<thead>
<tr>
<th>Project Number</th>
<th>Project Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARRA-01</td>
<td>Commercialization Effort for 1W Consumer Electronics Power Pack</td>
<td>749</td>
</tr>
<tr>
<td>ARRA-02</td>
<td>Solid Oxide Fuel Cell Diesel Auxiliary Power Unit Demonstration</td>
<td>753</td>
</tr>
<tr>
<td>ARRA-03</td>
<td>Highly Efficient, 5kW CHP Fuel Cells Demonstrating Durability and Economic Value in Residential and Light Commercial Applications</td>
<td>756</td>
</tr>
<tr>
<td>ARRA-06</td>
<td>PEM Fuel Cell Systems Providing Backup Power to Commercial Cellular Towers and an Electric Utility Communications Network</td>
<td>759</td>
</tr>
<tr>
<td>ARRA-07</td>
<td>Accelerating Acceptance of Fuel Cell Backup Power Systems</td>
<td>761</td>
</tr>
<tr>
<td>ARRA-08</td>
<td>HEB Grocery Total Power Solution for Fuel Cell Powered Material Handling Equipment- Fuel Cell Hybrid Power Packs and Hydrogen Refueling</td>
<td>763</td>
</tr>
<tr>
<td>ARRA-09</td>
<td>7B: Fuel Cell-Powered Lift Truck FedEx Freight Fleet Deployment</td>
<td>766</td>
</tr>
<tr>
<td>ARRA-10</td>
<td>Fuel Cell-Powered Lift Truck Sysco Houston Fleet Deployment</td>
<td>768</td>
</tr>
<tr>
<td>ARRA-11</td>
<td>7B: GENCO Fuel Cell-Powered Lift Truck Fleet Deployment</td>
<td>771</td>
</tr>
</tbody>
</table>

APPENDIX A: ATTENDEE LIST

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>775</td>
</tr>
</tbody>
</table>

APPENDIX B: SUBPROGRAM COMMENTS

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>801</td>
</tr>
</tbody>
</table>

APPENDIX C: EVALUATION FORMS

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>805</td>
</tr>
</tbody>
</table>

APPENDIX D: PROJECTS NOT REVIEWED

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>817</td>
</tr>
</tbody>
</table>

APPENDIX E: SURVEY QUESTIONNAIRE

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>827</td>
</tr>
</tbody>
</table>