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Overview

Timeline Barriers
« Start: October 2008 » Stove-piped/Siloed
» End: September 2010 Analytical Capability [4.5.B]
(expected to continue in FY11) + Suite of Models and Tools [4.5.D]
« Complete: 75% (FY2010 work) * Unplanned Studies and

Analysis [4.5.E]

Budget Partners

- Total Project Funding: $190k NREL H2 analysts

— 100% DOE-funded NREL Strategic Energy Analysis
« FY2009: $150k Center analysts
- FY2010: $40k Pacific Northwest Laboratory

Xcel Energy
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Relevance: Hydrogen has Unique Attributes as an
Energy Storage Medium

The Potential Value of Energy Storage - Make variable and unpredictable
renewable resources dispatchable

m Wind Farm Output 1 Stored Wind Energy
Storage System Output M Spiled Wind Energy

7 8 9 10 M1 12 13 14
Day
Source: Denholm, Paul. (October 2006). “Creating Baseload Wind Power Systems Using Advanced Compressed Air Energy Storage Concepts.”
Poster presented at the University of Colorado Energy Initiative/NREL Symposium. http://www.nrel.gov/docs/fy07osti/40674.pdf

Hydrogen could play duel role as a storage medium for electricity
and as a fuel for vehicles.
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Relevance: Lifecycle Cost Analysis Used to Evaluate
Hydrogen Energy Storage

Facility lifecycle cost analysis used for both Task 1 and
Task 2

Objective for Task 1

Evaluate the economic viability of using hydrogen for utility-scale energy
storage applications in comparison with other electricity storage
technologies

— Simple energy arbitrage scenario
— Analysis of potential for cost Improvements over time

Objective for Task 2
Explore the cost and GHG emissions impacts of interaction of hydrogen storage
and variable renewable resources

— Specific locations and wind profiles

— Hourly energy analysis to capture detail
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Relevance: Impact on Barriers

Barrier Impact

Stove-piped/Siloed «Competing hydrogen against other technologies in a
Analytical Capability | lifecycle cost analysis provides context for results.
[4.5.B] -Analysis of production of excess hydrogen for vehicles

integrates transportation and electricity sectors

Suite of Models and |+ HOMER model provides a consistent, detailed platform for
Tools [4.5.D] lifecycle cost analysis of varied suite of technologies

*Fuel Cell Power model modified to evaluate storage
integrates hourly energy analysis capability with H2A
economic analysis capabilities

*Results from storage studies can be evaluated
geographically in the SERA model

Unplanned Studies *Analysis integrating renewable resources (wind and solar)
and Analysis [4.5.E] in specific locations with hydrogen storage
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Approach: Milestones

Milestone | Title Date Status

Working draft energy storage
scenario cost/ benefit analysis

Task 1 Aug 2009 | Complete

Draft final energy storage

Task 1 scenario cost/ benefit analysis Sept 2009 | Complete
Report published Nov 2009 | Complete
Briefing on GHG avoided

Task 2 |emissions and cost Mar 2010 | Complete

implications for carbon policy
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Approach: Task 2 Refines & Builds Upon the Results from
Task 1

Task 1: Compare costs for hydrogen and competing technologies
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Task 1 Approach: Compete Hydrogen with Alternative
Technologies for Simple Energy Arbitrage Scenario

60,000+ 20.000 5 — AC Primary Load
S‘ 50,000—_ -40.000 T — gtrid I:(’:IOE'ECII‘
] ! === Stored Hydrogen
= 40,000 _ | 30.000
% 30,000 - . T
é 20,000 - 20,000 £
10,000- -~ 10,000 §
0 | L0 &
1 2 3 4 5 6 ? Source: HOMER model output
January

Nominal storage volume is 300 MWh (50 MW, 6 hours)

o Electricity is produced from the storage system during 6 peak hours (1 to 7 pm)
on weekdays
o Electricity is purchased during off-peak hours to charge the system

Electricity source: excess wind/off-peak grid electricity
o Assumed steady and unlimited supply during off-peak hours (18 hours on
weekdays and 24 hours on weekends)
o Assumed fixed purchase price of off-peak/renewable electricity
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Task 1 Accomplishments: Levelized Cost Comparison of
Hydrogen and Competing Technologies

Ranges of Levelized Cost of Output Electricity from Storage

120
g |, _______________________ |
< 100 ' The levelized cost is the total 8
= ' annualized cost of capital and :
;‘§ 83 : operating expenses throughout |
= 80 ! the life of the facility divided by -
T 1 the total yearly energy output |
- t /
e T
3
IS 10 .
§ ---- = ¢/KWh
= | . 28 28 Estimate
§ 204+— — " 24 19 . 25 o for 3-5
L 1 year future
3 3 10 timeframe

Hydrogen is competitive with batteries and could be competitive with CAES
and pumped hydro in locations that are not favorable for these technologies.
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Task 1 Accomplishments: Hydrogen Energy Storage
System with 1,400 kg Excess Hydrogen per Day—NPC
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* Five tankers of excess hydrogen per day (1,400 kg/day)
o Electrolyzer and hydrogen tank slightly larger for the excess hydrogen case than for
the case without excess hydrogen
o Hydrogen LCOE of $4.69/kg (not including tanker truck transport and dispensing)
o Compares to ~$4 for production portion of electrolysis forecourt station
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Task 1 Accomplishments: Hydrogen Energy Storage
System with 12,000 kg Excess Hydrogen per Day—NPC
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« 500 kg/h of excess hydrogen (12,000 kg/day)
o Electrolyzer approximately doubled in size in comparison to the case without excess

hydrogen

o Hydrogen LCOE of $3.33/kg (not including tanker truck transport and dispensing)
o Compares to ~$7 for electrolysis at a central production facility of the same size
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Task 1 Accomplishments: Round-Trip Efficiency and
Electricity Price Sensitivity

Sensitivity to electricity price is roughly inversely proportional to

round-trip efficiency
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Storage System Round-Trip Efficiency

o Low-capital-cost, high-efficiency pumped hydro system is sensitive to electricity price
o High-capital-cost NiCd system is insensitive to electricity price
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Task 2 Approach: Study Framework - Add Hydrogen
Storage to a Base Case Without Storage

Analysis of the base case
provides LCOE and avoided
emissions for comparison

Base Case (without storage)

Curtailed
electricity
17%

Electricity
to grid
82.7%

National Renewable Energy Laboratory

Storage Constrained Case
. Electricity to storage
(iurta.lle.d 15.5% of total wind farm output
e e1ct£;';/c:|ty Electricity from storage
70 4.5% of total output

Hydrogen Electricity to grid (storage +
Storage direct)

400 MT 87.1% of total wind farm output

Transmission Constrained Case

Curtailed Electricity to storage
electricity 27.5% of total wind farm output
12% Electricity from storage
7.4% of total output

Hydrogen

Storage (storage + direct)

2,600 MT 68% of total wind farm output
i
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Task 2 Approach: Configure a Base Case Without Storage

Shed
electricity

Base Case Configuration

o Power from the wind farm
IS routed to the
transmission line up to

Wi o the maximum capacity of
w 1| P e — the line (MW)
o Power from the wind farm
g . will be curtailed (shed) if
R ) e it exceeds the maximum
® 1900 f 2 capacity of the
S o0, ‘ transmission line
S 800 : L
5 ml— 1 o Transmission line cost
% s00d gt - - per MW capacity trend
5 20 = . decreases with
0

500 ‘IOIOO 15I00 20I00 25IOO BOIOO 35IOO 4000 IncreaSIng CapaCIty

Line Capacity (MW)
*Source: P. Denholm, R. Sioshansi, Energy Policy 37 (2009) 3149-3158
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Task 2 Approach: Add Hydrogen Storage to the Base
Case

Major Assumptions

o Electrolyzer and PEM fuel cell
performance and cost values
derived from mid-cost case of
lifecycle cost analysis

Shed
electricity

o Hydrogen storage in geologic
storage

o Lhe sto(ﬁge syé?tem is located at
the wind farm & all electricity

Hyd rogen charged to the storage system is

Storage derived from the wind farm

o Adedicated transmission line
carries electricity from the wind
farm/storage system to the grid

T near demand centers.

< \ o Power from the wind farm will be
553 curtailed (shed) if:

o It exceeds the maximum
charging rate of the storage
system + maximum capacity
of the transmission line

o The storage system is full
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Task 2 Approach: Wind Farm Location
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Task 2 Accomplishments: Preliminary Results

Storage reduces the amount of electricity that must be curtailed and

reduces the LCOE
Base Case Storage Transmission
Constrained Constrained
(% of Total Wind Farm Output)
Electricity Direct from Wind 82.7 82.7 60.8
Farm to Transmission Line
Electricity from Storage N/A 4.5 7.4
Electricity Shed 17.3 1.9 11.7
Net Electricity to 82.7 87.2 68.2

Transmission Line

(% of Total Transmission Line Capacity)
Transmission Line Utilization 56.0 59.0 69.0

(LCOE ¢/kWh)

Without cost of carbon 13 10 12
@ cost of carbon $50/MT 9 6 8
CO2eq
@ cost of carbon $100/MT 5 2 4
CO2eq
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Task 2 Accomplishments: Preliminary Results — Cost of
Carbon

Credit for avoided emissions reduces LCOE for wind electricity below

grid price

== -=Chicago grid

== Base case wind

==l===Transmission
constrained wind

Cost of Electricity c/kWh

== Storage constrained
0 wind

0 50 100

Cost of Carbon $2008/MT CO2eq

Cost comparison for Chicago Grid Electricity v Wind Electricity for Various Storage Configurations
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Summary

Relevance

Approach

Accomplishments

Collaborations &
Reviewers

Proposed Future
Work

National Renewable Energy Laboratory

« Comparison of hydrogen and other technologies for energy storage
forms a basis for future research and analysis work.

» Hydrogen could bridge power and transportation sectors

» Hydrogen storage could provide an advantage for large scale
isolated renewables

« Comparison of hydrogen to alternative technologies in a facility
lifecycle cost analysis for a simple scenario

» Extension of results to analysis of hydrogen storage for a realistic
case study for an isolated wind farm.

« Hydrogen is competitive with batteries and could be competitive with
CAES and pumped hydro in locations that are not favorable for these
technologies.

» Hydrogen storage could reduce the amount of electricity that must be
curtailed and reduce the LCOE for an isolated wind farm.

« Xcel Energy

 NREL H2 analysis team, NREL Strategic Energy Analysis team
 Pacific Northwest National Laboratory

« Optimization of electrolyzer, storage capacity, fuel cell and
transmission

« Analysis of solar installations and additional wind sites
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Proposed Future Work

« Develop a methodology for optimizing the size of the storage
system components and transmission to minimize costs for an
iIsolated wind farm or solar installation

« Perform an analysis for an isolated solar installation

« Compare greenhouse gas emissions/carbon tax implications for
hydrogen storage and compressed air energy storage.
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Supplemental Slides
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Approach Task 1: Compete Hydrogen with Alternative
Technologies for Simple Energy Arbitrage Scenario

Study Framework

« Basic energy arbitrage economic analysis
o Lifecycle costs including initial investment, operating costs, and future replacement
costs
o Results presented as levelized cost of delivered energy ($/kWh)

« Benchmark against competing technologies on an “apples to apples” basis
o DBatteries
o Pumped hydro
o Compressed air energy storage

« Cost Analysis Performed Using the HOMER Model (HOMER Energy,

www.homerenergy.com)

Timeframes
High cost or “current” technology
Mid-range cost
Some installations exist
Some cost reductions for bulk manufacturing and system integration have
been realized
Installations are assumed in the near future: 3 to 5 years
Low-range cost
Estimates for fully mature technologies and facility experience
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Approach Task 1: Hydrogen Scenarios—Major
Assumptions

e

L Major Assumptions
2= Electricity
CN— »| Electrolyzer o Electrolyzer performance and

cost based on alkaline
‘ electrolyzers operated at 435

ﬂ 7 psi, 80°C

o Polymer electrolyte membrane

h

Fuel Cell
Hydrogen .
Or Gas D gtorage (PEM) air cooled fugl cell
Turbine operated at ~ 30 psi
o Hydrogen storage in
aboveground steel tanks or
. geologic storage
£ o= Electricity
o Hydrogen storage losses
——1 Electrolyzer assumed minimal
| o Compression energy not
‘ 7 recovered
ruck o Hydrogen delivery and
rUcK or : : : :
Fuel Cell Hydrogen Lol d|spen§|ng not included in the
Storage delive analysis of excess hydrogen for
ry :
vehicles
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Approach Task 1: Batteries, Pumped Hydro, & CAES—
Major Assumptions

Major Assumptions

=
Sk Electricity o Power conversion system for
‘ l "Battery battery round-trip efficiency
is 90%.

W o Pumped hydro and CAES
systems do not require
separate power conversion
system.

o For compressed air storage
== systems, compression heat
g Electricity (oo is not stored. Air from the
_&k ) . ] storage system is heated

‘ 'LlTurbine

Ty "

Air or Water
Reservoir

with turbine exhaust gas.
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Accomplishments Task 1: Cost Implications for Hydrogen
Systems

» Costs could be reduced by increasing the round-trip efficiency.

o Fuel cell efficiency has a bigger impact on LCOE than electrolyzer efficiency.
o ~0.5% change in LCOE per percent change in fuel cell efficiency

o ~0.2% change in LCOE per percent change in electrolyzer efficiency

» Cost could be reduced if a reversible fuel cell with higher round-trip efficiency were
developed.

« Hydrogen is competitive with battery technologies for this application and could be
competitive with CAES and pumped hydro in locations that are not favorable for these
technologies

« Excess hydrogen could be produced for the transportation market.

« Hydrogen has several important advantages over competing technologies, including:

« Hydrogen has very high storage energy density (170 kWh/m3 vs. 2.4 for CAES and 0.7 for
pumped hydro).

» Allows for potential economic viability of aboveground storage

» Hydrogen could be co-fired in a combustion turbine with natural gas to provide additional
flexibility for the storage system.

« The major disadvantage of hydrogen energy storage is cost.
« Research and deployment of electrolyzers and fuel cells may reduce cost significantly.
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Accomplishments Task 1: Conclusions

« Hydrogen is competitive with battery technologies for this application
and could be competitive with CAES and pumped hydro in locations
that are not favorable for these technologies

« Excess hydrogen could be produced for the transportation market.

« Hydrogen has several important advantages over competing
technologies, including:

o Hydrogen has very high storage energy density (170 kWh/m3 vs. 2.4 for
CAES and 0.7 for pumped hydro).

o Allows for potential economic viability of aboveground storage

o Hydrogen could be co-fired in a combustion turbine with natural gas to
provide additional flexibility for the storage system.

« The major disadvantage of hydrogen energy storage is cost.

o Research and deployment of electrolyzers and fuel cells may reduce
cost significantly.
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Approach Task 2: Study Framework — Storage Model

Modeling constraints

o Modified FCPower model used
for energy and cost modeling

Shed o Power from the wind farm is first
. . routed to the transmission line up
elec"'c'ty to the maximum capacity of the
line (MW)

Hydrogen o Electricity charging and discharge
Storage rates from the storage system are
constrained by the size of the
electrolyzer and fuel cell
respectively

| —— o Power from the wind farm will be
3 curtailed (shed) if:

Al

o It exceeds the maximum
charging rate of the storage
system + maximum capacity
of the transmission line

o The storage system is full
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Accomplishments Task 2: Base Case (wind farm without

storage)
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o The benefit of increasing the transmission line size decreases as the transmission
line size approaches 100% of the nameplate capacity of the wind farm (1,000 MW)
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