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Overview: Improve robustness of hydrocarbon-

fueled, solid-oxide fuel cells o
m Colorado School of Mines
m Timeline m Barriers
— Project start date: 7/1/2008 — Durability: Broaden SOFC operating window
— Project end date: 6/30/2010 under hydrocarbon fuel streams

— Percent complete: 97% — Performance: Increase efficiency through
system optimization

= Budget _ )
_ L — Transient operation: Develop model-
— Total project funding: predictive control algorithms

= DOE Share: $1,476,000 _ | 4ustrial Partners
= CSM Share: $362,509

— Protonex Technology C ti
— Funding received in FY08: rotonex Technology Corporation

s Provide technical data on solid-oxide

. $.1,476,000 fuel cell (SOFC) auxiliary power unit
— Funding for FY09: $0 — Reactions Systems, LLC
N7 = Develop hydrocarbon-fuel reforming

catalyst and catalyst-support materials
— CoorsTek, Inc.
= Provide tubular SOFCs for testing
— Project Lead: Colorado School of Mines
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Objectives / Relevance: Improve performance,
durability, and transient response of SOFC systems (&5

CECE
m Task 1: SOFC materials for robust operation on bio-fuels

— Sulfur- and redox-tolerant anodes broaden SOFC operating windows
= Nickel-free, perovskite-based anodes using novel cell architectures
= Proton-conducting ceramic materials

m Task 2: Liquid-hydrocarbon / bio-fuel reforming strategies
— Examine tradeoffs between reforming approach and cell performance

m Task 3: Create thermally stable fuel-reforming catalysts and supports
— Next-generation catalysts stable under harsh reforming conditions

m Task 4: Employ system modeling to optimize APU configurations
— Optimize thermal management through integrative numerical modeling

m Task 5: Utilize model-predictive control to integrate system hardware
— Improve APU dynamic response, reduce supplementary-storage need

CTION
STEMS ;

2 Protonex




Task 1 Approach: Develop materials to improve
SOFC durablllty under hydrocarbon / alcohol fuels (&&=
n Create advanced SOFC architectures to improve SOFC durability

— Anode Barrier and Catalyst Layers improve SOFC robustness under
hydrocarbon fuels

— Milestone: Demonstrate new anode architecture on CH, (100%)
— Milestone: Demonstrate new anode architecture on liquid fuels (90%)
m Develop nickel-free, perovskite-based, next-generation SOFC anodes
— Nickel-free anode more tolerant to sulfur, redox, and heavy hydrocarbons
— Milestone: Demonstrate next-generation anode operation on CH, (70%)
m Develop proton-conducting SOFC materials
— Reduce operating temperature to 400 — 700°C
— Reduce raw-materials cost through novel ceramic processing
— Milestone: Fabricate candidate proton-conducting ceramics (100%)
— Milestone: Evaluate materials stability / durability (85%)
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Task 1 Results: Tubular SOFCs with Barrier Layers

show expanded operating windows under CH, fuel &
_ m Colorado School of Mines

m |nert Barrier Layer within SOFC Tubular SOFC equipped with Barrier Layer
. Silver mesh current collector
— Increases H,O content in anode Composite Anode

: i D lectrolyt
— Promotes internal reforming Composite Cathoden,
— Enable deposit-free operation

Barrier layer

Tubular cell performance under CH, / air fuel feed
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Task 1 Results: Demonstrated materials stability of
next-generation SOFC anodes

_ m Colorado School of Mines

. . Micrograph of multi-phase
m Nickel-free perovskite anode development perovskite morphology

— Multi-phase ceramic anode
— Srygla, ,TiO; (SLT)
= High electronic conductivity
— (Lag 75510 25)0.95MNg 5Crg 503 (LSCM)
= Internal reforming
— Yttria-stabilized zirconia (YSZ)

= Thermal-expansion matching w/ electrolyte ‘ )
Micrograph of tubular perovskite
based anode w/ YSZ electrolyte
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m Multi-phase stability established
— No Lanthanum-Zirconate phases formed

m Open pore structure established
— Optimal morphology for gas transport

Multl-phase
Anode
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Task 1 Results: Proton-conducting ceramics show

near-record conductivities at 1/10t" fabrication cost

N CEET
m Barium-cerate / zirconate (BCZY) materials

— Badr,,Ce(;Y,1Yby 1055

lonic Conductivity of BaZr, ,Ce,;Y,,1Yb;10;.5

— Solid-state reaction sintering o LI L B B r
— Lower processing temperature

— Lower materials cost

BaZr, ;Ce; 7Y.1Yby 105 ; morphology
after sintering at 1450°C
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Task 1 Results: Characterized gas transport and
internal-reforming chemistry of anode structures

Separated Anode Experiment

Fuel channel

PSR T

CHg+CO2=2H2+2CO  CO+H20 =Hz + CO2

v, v L, v W v

Porous
anode

Electrolyte
inlet

Electrolyte
r‘ exhaust

~Compression
spring
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Gas transport (top) and reforming chemistry (bottom)
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Task 2 Approach: Develop liquid-fuel processing
strategies for optimal compatibility with SOFC szl )
CECT
m Biomass-derived liquid fuels: ethanol (C,H;O) and butanol (C,H,OH)
— Butanol energy density 75% of diesel
m High-pressure spray vaporizes liquid fuels

m Co-flow air stream mixes fuel vapors with oxidizer

m Catalytic partial oxidation fuel reforming converts fuels to syngas

— Milestone: Syngas production from biomass-derived liquid-fuel (100%)
— Milestone: Demonstrate steady operation with liquid-fuel reformate (80%)

Process flow diagram of liquid-fuel reforming experiment

- Rhodium oy Exhau;
catalyst 2] =
[ ' 2 Q Fuel
(MFC) (MFC)(MFC) = 9
= %
P~ )
_ Quartz
CH4| |[CO2]| | Arr Liquid Mixing reactor
fuel chamber —Ileated
injection lines Gas sample
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Task 2 Results: Established biomass-derived liquid-fuel
processing for SOFC operation
m Colorado School of Mines
m Demonstrated ethanol and butanol CPOX reforming
— Rhodium catalyst on hexaaluminate catalyst support

Ethanol CPOX reformate over time Butanol reformate composition
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Task 2 Results: Demonstrated tubular SOFC operation

under CPOX’ed butanol reformate

m Catalytic partial
oxidation of butanol

— Nitrogen dilution
— Lower OCV

— Concentration
polarization

m 35% decrease in cell
power density

m Longer-term operation
to be established

2 Protonex

Cell Potential (V)

Colorado School of Mines

Tubular SOFC performance under hydrogen and
butanol-reformate fuel streams
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Task 3 Approach: Synthesize thermally stable fuel-
reforming catalysts to improve APU durability
_ m Colorado School of Mines

m Prepare stable hexaaluminate catalyst supports Sr-hexaaluminate
atomic structure
— Strontium disturbs Al,O, crystal structure |5.66 Al

-----

— Limits sintering in [1 0 0] axis
— Enables high-temperature stability
— Milestone: Prepare catalyst supports (100%)

m Evaluate catalysts for biomass fuel processing

— Milestone: Demonstrate with biomass fuels (100%)

m Tieto Task 2
— Ethanol
— Butanol

Strontium

Micrograph of
hexaaluminate
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Task 4 Approach: Create optimal SOFC system

designs through process and thermal modeling
CECT C

m Develop physics-based component models SOFC Hot Module

olorado School of Mines

— Detailed thermal management models
— High-order electrochemistry models
— Computational fluid dynamics oo~ |

Anode-supported —~_
SOFC tubular stack  [FSg

m Apply to systems design and simulation q

— Reduced-order models for steady- e
state process design and simulation e H

— 1st-generation Protonex 4x600-W tubular SOFC system

— Milestone: 90% complete

CPOx Air feed

m Generate optimal system configuration(s) and operating parameters

— Improved heat-transfer estimates within temperature control
— Predict system performance under sensor uncertainty
— Milestone: 75% complete
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Task 4 Approach: Systems-level design explored

from multiple viewpoints and modeling tools

m High-order CFD-electrochemical models
m Reduced-order thermal models coupled with 0-D process design

m Exergy-analysis models

Protonex 600-W system process diagram

Colorado School of Mines
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Task 4 Approach: Hybrid CFD-electrochemical model
bridges chemical and geometrical complexities

m Colorado School of Mines
m Separate complex chemistry and flow Integrated Shell-and-Tube System
] ] Cathode Air A?,T,?ui, Cathode Air
— Chemically reacting anode flow: CANTERA e | ntet
— Cathode air flow: CFD in FLUENT | ' |
— Iterate models to find coupled solution t T e J
. . . . . Mixing [~ Mixin B
m Enables high-fidelity system simulation i L:T\T T |v|g\
m Extension to thermally integrated system g
— Tail-gas combustor (TGC), CPOX processes | g |
Coupling of tetrahedral FLUENT and
plug-flow CANTERA model meshes l» <‘l
55‘ ] [[1]]
CPOX
\4 \ 4' '\\ \ Fuel Plenum ij /..-"
< ‘ﬂ:‘ Insulation +7
; Exhaust
Outlet
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Task 4 Results: Coupled model predicts detailed
performance information, internal stack conditions

m Radiation heat transfer

— >75% of total heat transfer in tube bundle
— Outer tubes act as radiation shields
— Inner tubes up to 50°C warmer

m Resolve local O, concentration

— Enables identification of oxygen-depletion zones

Cathode flow lines and tube temperature Oxygen-depletion zones

Flow path lines Tube temperature O2 mole fraction  Tube temperature

g

TRZE

697°C
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Task 5 Approach: Improve APU dynamic response

through model-based predictive control
m Colorado School of Mines

Physical processes captured in

Low-order linear model representation

high-fidelity models
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m Fast low-order models built from detailed physical models
— Dimensionality reduction while matching dominant dynamic behavior
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Task 5 Approach: Physics-based models are

reduced for use in rapid model-predictive control T ¥
CECE

m Reduce slow, high-order physics-based models

— Employ sampling approach to high-order model reduction

m Create fast, low-order models for use in model-predictive control

— Linear, parameter-varying model structure
» Stable over wide APU-system operating range
— Milestone: Model reduction of SOFC stack (100% complete)
— Milestone: Model reduction of complete SOFC system (80% complete)

m Develop real-time control schemes to improve system response

— Milestone: Model-predictive control of SOFC stack (100% complete)
— Milestone: Model-predictive control of SOFC system (80% complete)
— Milestone: Real-time model-predictive implementation (100% complete)
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Task 5 Results: Demonstration of fuel-cell stack control
with broad load variation

m Colorado School of Mines
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— Desired current trajectory (blue) achieved while meeting
constraints on cell voltage, fuel flow rate, and hydrogen utilization

— Validates reduced-order models
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Task 5 Results: Reduced-order models match
single-tube response over wide operating range

LORAX

m Colorado School of Mines

m  Scheduling functions select appropriate model for operating condition
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Industrial collaborations: Protonex Technology
Corporation, Reaction Systems LLC, CoorsTek Inc. (&5
CECT
m Protonex: subcontractor to CSM; provide technical data and support
— Hot-zone developer for EERE long-haul truck APU project
= Subcontractor to Cummins Power (Program DE-FC26-01NT41244)
— CSM system-/ control-model results incorporated into Protonex designs
m Task 4 and Task 5
— Collaboration with CSM on next-generation SOFC materials (Task 1)
= Leveraged by Sandia LDRD on high-temperature electrolysis
m Reaction Systems: subcontractor to CSM for catalyst development
— Novel catalysts developed by Reaction Systems (Tasks 2 and 3)
— Catalyst fundamental chemistry examined at CSM
= Leveraged by Phase Il SBIR program
= Funded by Air Force Research Lab (Contract #FA8650-07-C-2722)

m CoorsTek, Inc.: Tubular SOFC supplier (Tasks 1 and 2)
CTION
STEMS s
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Future work [ )
CEC

m Task 1: Next-generation SOFC materials and architectures

— Use Ni-free perovskite anode materials in fabrication of complete cells
— Use proton-conducting materials in fabrication of complete cells

m Task 2: Biomass-derived liquid-biofuel reforming

— Quantify stability of catalyst and SOFC for CPOX-reforming of butanol
— Extend testing to longer durations (1000 hours)

m Task 3: Fuel-reforming catalyst development
— Conduct extended aging tests with catalysts and support materials
m Task 4: System-level modeling

— Update tubular SOFC geometry to 3'9-generation Protonex design
— Perform parameter-sensitivity study on mobile SOFC system concepts

m Task 5: System-control effort
— Extend model-reduction and control strategy to Balance-of-Plant
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Summary: CSM program improves robustness of
liquid-hydrocarbon / biomass-fueled SOFC APUs

CECE
m Relevance:

— Improve reliability: materials, architectures and system-level models
— Expand operating windows: liquid-fuel reforming, system-control strategy
m Approach:

— Create next-generation SOFC materials and reforming catalysts

— Develop fuel-reforming, system-modeling, and system-control tools

— Collaborate / validate new materials and designs with industrial partners
m Results:

— Demonstrated improved SOFC operation on ethanol and butanol fuels
— System/control models developed and tuned to Protonex/Cummins APU
m Future work:

— Long-term testing of SOFCs and catalysts under CPOX’ed butanol
— Sensitivity analyses of system-level modeling tools
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