Biomass Fuel Cell Systems

Primary Investigator:
Assistant Professor Neal P. Sullivan

Co-Investigators:
Professors Robert Braun, Anthony M. Dean,
Robert J. Kee, Ryan O’Hayre, Nigel Sammes, Tyrone Vincent

Colorado School of Mines
Golden, Colorado, USA

June 8, 2010

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview: Improve robustness of hydrocarbon- and biomass-fueled solid-oxide fuel cells and systems

- **Timeline**
 - Project start date: 10/1/2009
 - Project end date: 9/30/2012
 - Percent complete: 20%

- **Budget**
 - Total project funding:
 - DOE Share: $1,665,125
 - CSM Share: $425,018
 - Funding received in FY09:
 - $1,665,125
 - Funding for FY10: $0

- **Industrial Partners**
 - CoorsTek, Inc. (Golden, CO)
 - Tubular SOFC supplier
 - Integrated ceramic heat-exchanger / fuel-reformer

- **Project Lead:**
 - Colorado School of Mines

- **Barriers:**
 - **Durability**
 - Broaden SOFC operating windows under hydrocarbon / biomass fuels
 - **Performance**
 - Increase efficiency through system optimization / BoP integration
 - Optimize fuel-processing strategies
 - Biogas fuels of anaerobic digesters
 - Bio-derived liquid fuels (butanol)
 - **Transient operation**
 - Develop model-predictive control algorithms
 - **Balance-of-Plant costs**
 - Integrate BoP components
 - Decrease BoP fabrication costs
 - Decrease BoP materials costs
Objectives / Relevance: Improve durability and performance of SOFC systems while lowering costs

- **Task 1: SOFC materials for robust operation on bio-fuels**
 - Sulfur- and redox-tolerant materials to broaden SOFC operating windows
 - Develop Nickel-free, perovskite-based anodes w/ novel cell architectures

- **Task 2: Fuel processing of bio-derived fuels**
 - Utilize methane from anaerobic digesters of waste-water treatment plants
 - Develop fuel-processing for biomass-derived liquid fuels (butanol)
 - Decrease cost of fuel-processing balance-of-plant hardware
 - Integrated ceramic micro-channel heat exchangers / fuel reformer

- **Task 3: Modeling and simulation**
 - Develop chemically reacting flow models of fuel-processing hardware
 - Create design tools for micro-channel heat exchanger (HX) / reformer
 - Utilize model-predictive control to integrate system hardware
 - Improve APU dynamic response, reduce supplementary-storage need
 - Conduct thermal modeling of hot-zone system components
 - Employ system modeling: explore benefits of BoP-component integration
Task 1 Approach: Develop materials to improve SOFC durability under hydrocarbon / alcohol fuels

- Develop nickel-free, perovskite-based, next-generation SOFC anodes
 - Perovskites more tolerant to sulfur, redox, and heavy hydrocarbons
 - Challenges in utilizing perovskites as anode materials in SOFCs
 - Materials stability during SOFC processing and cell operation
 - Electronic conductivity significantly lower than existing solutions
 - Catalytic activity may limit internal reforming of biomass fuels
 - Fabricate novel perovskites with unique material-doping strategies
 - Milestone: Synthesize first next-generation anode material (100%)

- Evaluate perovskite anode performance relative to Ni-YSZ baseline
 - Quantify stability, conductivity, and catalytic activity of new materials
 - Catalytic activity evaluated using unique Separated Anode Experiment
 - Decouples anode internal-reforming processes from electrochemistry
 - Materials conductivity currently under evaluation using 4-pt probe
 - Milestone: Demonstrate electronic conductivity > 10 S / cm (100%)
 - Materials stability measured using thermo-gravimetric analysis
 - Milestone: Demonstrate materials stability using TGA (10%)
Task 1 Results: Perovskite materials synthesized; conductivity baselined against Ni-YSZ materials

- Perovskite anodes synthesized
 - $\text{Sr}_{0.8}\text{La}_{0.2}\text{TiO}_3$ (SLT)
 - High electronic conductivity
 - $(\text{La}_{0.75}\text{Sr}_{0.25})_{0.95}\text{Mn}_{0.5}\text{Cr}_{0.5}\text{O}_3$ (LSCM)
 - Internal reforming
 - Multi-phase SLT / LSCM ceramic anode

- DC conductivity baselined against Ni-YSZ
 - Materials-conductivity test stand commissioned
 - Vary temperature, gas composition
 - Ni-YSZ conductivity > 1000 S / cm
 - Stable across wide range of steam content
 - SLT conductivity > 17 S / cm
 - Decreases as steam content increases
 - LSCM conductivity < 1 S / cm
 - Insufficient for SOFC-anode applications
Task 2 Approach: Develop bio-fuel processing strategies for optimal compatibility with SOFC

- **Biogas fuels:** anaerobic digesters at waste-water treatment facilities
 - Low-quality methane stream: 65% CH₄ / 35% CO₂
 - MW-scale power generation

- **Explore fuel-reforming options to convert biogas to syngas (H₂ + CO)**
 - Catalytic partial oxidation (CPOX - air and / or O₂)
 - Simplest approach, but lowers system efficiency
 - Steam and / or dry reforming (H₂O and / or CO₂)
 - Endothermic, but improves system efficiency and cell performance

- **Milestone:** Demonstrate biogas-reforming reactor (100%)
- **Milestone:** Identify optimal reforming conditions (25%)
- **Milestone:** Demonstrate SOFC operation on biogas reformate (75%)

- **Biomass-derived liquid fuels:** butanol (C₄H₉OH)
 - Butanol energy density 75% of diesel
 - **Milestone:** Demonstrate integrated liquid-fuel vaporizer / reformer (100%)
Task 2 Results: Kinetic model for biogas reforming on Rh-based catalyst developed and implemented

- Reacting-flow model with multi-step elementary reaction chemistry
- Exercised across numerous reforming approaches
- Excellent conversion of CH$_4$ and CO$_2$ to syngas at 900 °C
 - Highest hydrogen content realized with CPOX using pure O$_2$

Illustration of reforming approach

Model-predicted biogas reformate composition for different reforming approaches (900 °C)
Task 2 Results: Bio-fuel reactor commissioned, integrated with SOFC-performance test stand

- Reforming approach strongly affects cell performance
- Cell performance under CPOX rivals H₂ fuel
Task 2 Results: Carbon-deposit precursors in biogas can be selectively reduced through O$_2$ addition

- Ethylene (C$_2$H$_4$) is the common precursor to deposits
- O$_2$ additional leads to significant reduction in ethylene
- H$_2$ and CH$_4$ concentrations are relatively unchanged
- CO preferentially formed over CO$_2$
Task 2 Approach: Develop low-cost ceramic micro-channel reactive heat exchangers for fuel reforming

- Low-cost alumina materials
- Co-sintered layers: Single-body device
- Low-cost manufacturing

Generation-3 design

Channel height
~ 0.55 mm

Hot outlet
Cold outlet
Hot inlet
Cold inlet

50 mm

100 mm

6 mm
Task 2 Result: Experimental results demonstrate ceramic micro-channel HX at 700°C hot-inlet temp

Inlet and outlet gas temperatures

Total heat transferred

Inlet flows = 130 slm
Cold inlet = 21 °C

Probable break in cold inlet

Probable break in cold inlet

Hot flow
Cold flow
Task 3 Approach: Provide modeling support for Tasks 1 and 2 using CFD and chemically reacting flow tools

- **Task 3a: Design tools for ceramic micro-channel reactive heat exch**
 - **ANSYS-FLUENT** Computational Fluid Dynamics software
 - Flow through complex heat-exchanger channel geometries
 - **CANTERA** chemically reacting flow software
 - Open-source code under development at Sandia National Labs
 - Elementary chemical kinetics for fuel-reforming simulations
 - Two models integrated through FLUENT “User-Defined Functions” feature
 - Enables high-fidelity chemically reacting flow with high-fidelity CFD

- **Task 3b: Model-predictive control for dynamic-load following**
 - Map high-fidelity CANTERA model results to rapid low-order linear models
 - Apply to fuel-reformer hardware for dynamic control of pump and blower

- **Task 3c: System-level modeling tools to advance thermal integration**
 - Map ANSYS-FLUENT results to lower-order hot-zone thermal models
 - Utilize system tools to estimate benefits of thermal-integration strategies
 - Integrated reactive heat exchangers
Task 3a Approach: CFD and chemically reacting flow models integrated to provide HX-design guidance

- ANSYS-FLUENT software utilized for computational fluid dynamics
- CANTERA software developed for chemically reacting flow simulation
- Two models integrated in FLUENT “User-Defined Functions” feature

Numerical mesh used in FLUENT simulations
Task 3a Result: Models indicate that baseline design shows axially uniform flow and temperature fields.

- Efforts leveraged by current NETL program at Colorado School of Mines.

3D simulations in FLUENT:
- Hot and cold fluid flow
- Conjugate heat transfer
Task 3b Approach: Extend high-fidelity chemically reacting flow models to model-predictive control

- Map high-fidelity CANTERA model results to rapid linear models
- Apply to dynamic control of fuel-reformer hardware
- Validate models with experimental apparatus
 - Milestone: Establish experimental fuel-reformer test bed (30% - Task 2)

Mapping of high-fidelity physical models to rapid low-order linear models

\[
\frac{dx}{dt} = Ax + Bu \\
y = Cx + Du
\]

Determine: \(x, A, B, C, D \)
Task 3b Result: Dynamic model of reformer developed; tuned to thermal response of experiment

Model-validation: reformer dynamic response (non-reactive conditions)
Task 3c Approach: Apply hot-zone modeling tools for creation of lower-order thermal networks

- **FLUENT high-fidelity CFD**
 - Hot-zone thermal interactions

- **Map to thermal networks**
 - Rapid modeling tools

Physical representation of SOFC-system concept

Thermal model resistive network
Task 3c Result: Radiative model of tubular SOFC hot zone shows impacts of cell pitch on temperature

Tubular stack geometry

Model predictions of tube temperature variations

- Tube temperature (°C)
- Tube number
- Cell pitch (mm)
- Heat transfer coefficient (W/m²K)
- Wall temperature (°C)

- $p = 14$ mm
- $h = 20$ W/m²K
- $T_w = 600$ °C

- $p = 17.5$ mm

- $p = 21$ mm

- $h = 0$ W/m²K
- $h = 3$ W/m²K
- $h = 10$ W/m²K

- $h = 20$ W/m²K
- $h = 35$ W/m²K

- Tube number
- Tube temperature (°C)

- Diagram showing tube temperature variations for different cell pitches and heat transfer coefficients.
Industrial collaborations: CoorsTek Inc., Golden, CO

- Largest ceramics company in the United States
- Supplier of SOFCs and materials for use across multiple tasks
 - Task 1: Provider of baseline Ni-YSZ materials
 - CSM compares Ni-YSZ to next-generation perovskite anodes
 - Task 2: Supplier of tubular SOFCs
 - CSM adds cathode layer to CoorsTek anode-electrolyte assemblies
 - CSM evaluates cell performance under bio-fuels reformate streams
 - Task 2: Fabricate ceramic micro-channel heat exchangers
 - CSM adds catalyst to reactive side of micro-channel heat exchanger
 - CSM develops test protocol, evaluates performance of reactive HX
 - CSM develops computational modeling to provide design guidance
Future work

- **Task 1: Next-generation SOFC materials and architectures**
 - Use Ni-free perovskite anode materials in fabrication of complete cells
 - Use proton-conducting materials in fabrication of complete cells

- **Task 2: Reforming of biomass-derived fuels**
 - Widen biogas operating windows: steam reforming, anode recycle
 - Establish fuel-processing of biomass-derived liquid fuel (butanol)
 - Validate processing strategies on operational SOFCs

- **Task 3: Modeling and simulation**
 - **Task 3a: Ceramic micro-channel reactive heat exchanger**
 - Add chemically reacting flow to established FLUENT CFD model
 - Exercise model; explore integrated reformer-HX operating windows
 - **Task 3b: Model-predictive control of fuel-reforming BoP hardware**
 - Expand mapping of high-fidelity models to rapid linear models
 - Develop control algorithms; validate on experimental facility
 - **Task 3c: Thermal modeling of SOFC stack and system**
 - Predict impacts of integrated reformer / HX on system efficiency
Summary: CSM program is focused on improving system robustness, decreasing BoP costs

- **Relevance**
 - Improve durability: advanced materials, improved control strategies
 - Decrease costs: Develop low-cost integrated reactive heat exchangers

- **Approach**
 - Create next-generation SOFC materials
 - Optimize fuel-reforming strategies for biomass-derived fuel sources

- **Results**
 - Demonstrated processing of next-generation SOFC-anode materials
 - Demonstrated modeling and experimentation for trouble-free SOFC operation on biogas reformate
 - Demonstrated operation of low-cost ceramic micro-channel heat exch.

- **Future work**
 - Establish SOFC operation using nickel-free perovskite anode materials
 - Define trouble-free cell operation on biomass-derived liquid fuel (butanol)
 - Extend heat-exchanger models to include chemically reacting flow
 - Explore effect of integrated reactive heat exchanger on system efficiency