Manufacturing R&D
DOE Fuel Cell Technologies Program
Pete Devlin

2010 Annual Merit Review and Peer Evaluation Meeting
June 7th, 2010
Goal & Objectives

Goal: Develop and demonstrate technologies and processes that will: Reduce cost of components and systems for fuel cells, storage, and hydrogen production and Grow domestic supplier base

Program Milestones

- **2011:** Complete development of standards for metrology of PEM fuel cells.
- **2012:** Develop continuous in-line measurement for MEA fabrication.
- **2013:** Establish models to predict the effect of manufacturing variations on MEA performance.
- **2013:** Demonstrate pilot scale processes for assembling stacks.

Near Term Target for Early Markets

- Lower fuel cell stack manufacturing cost by $2,000/kW ($4,000 to $2,000/kW)
Fuel Cell Manufacturing Budget

FY 2010 Appropriations = $5.00M
FY 2011 Request = $5.00M

- **FY 2010 EMPHASIS**
 - Complete technical process designs for fuel cell stack and components and go/no-go decisions.
 - Start Phase 2 of continuing projects with and complete by EOY 2012.

Budget Breakdown

<table>
<thead>
<tr>
<th>Department</th>
<th>FY 2010 Appropriation</th>
<th>FY 2011 Appropriation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrode Deposition</td>
<td>$0.80</td>
<td>$0.83</td>
</tr>
<tr>
<td>High Pressure Storage</td>
<td>$0.80</td>
<td>$0.80</td>
</tr>
<tr>
<td>MEA Manufacturing</td>
<td>$0.90</td>
<td>$1.10</td>
</tr>
<tr>
<td>GDL Fabrication</td>
<td>$0.25</td>
<td>$0.79</td>
</tr>
<tr>
<td>Testing of FC Stacks</td>
<td>$0.55</td>
<td>$0.34</td>
</tr>
<tr>
<td>Measurement of FC Stacks</td>
<td>$1.35</td>
<td>$1.10</td>
</tr>
</tbody>
</table>
• Fuel Cell MEA Measurement R&D (NREL)
 • Developed IR-based test stand for multi-function defect detections such as pinholes, shorting, and electrode thickness variations.

• High Speed, low cost fabrication of gas diffusion electrodes for MEAs (BASF)
 • Developed an innovative on-line XRF
 • Developed a predictive model for electrode variation and defect impacts on MEA performance

• Developed process model for controlling GDL coating conditions (Ballard)
 • Significant improvement in quality yields and GDL cost reduction estimated at 53% to-date.

This is the first time a scanning XRF has been used on GDEs – BASF
2010 Progress & Accomplishments

- Manufacturing of Low-Cost, Durable MEAs Engineered for Rapid Conditioning (GORE)
 - Cost model results indicate that a new 3 layer MEA process has potential to reduce MEA cost by 25%
- Developed and Tested Non-Contact sensors for Bi-Polar Plate Process control (NIST)
- Developed and Tested Leak-Test and Conditioning Stand (Ultracell)
- Adaptive process controls and ultrasonic's for high temp PEM MEA manufacturing (RPI)
 - Ultrasonic welding of HT MEA components stronger than thermal welds, with a cycle time less than 1 sec, and more than 95% energy savings.
2010 Progress & Accomplishments

- Evaluated manufacturing process
 - Determined high labor costs and low product yields were keeping GDL cost high
 - Initial focus was on substrate manufacturing to allow for full-width production
 - Now focused on three key areas:
 - Improve process understanding
 - Reduction of processing steps
 - Implementation of on-line measurement techniques to improve product quality and reduce process scrap

GDL Actuals vs DoE Target Costs ($/kw)

- **Cost ($/kw)** vs **Calendar Year**
- **GDL Actual costs** vs **Projected cost points**

BMP’s Annual volume of Paper based GDLs sold (equivalent kW)

- **GDL Volume (equivalent kW)** vs **Calendar Year**
- **BMP’s Annual volume** vs **Calendar Year**

Ballard Cost Reduction Forecast and Realized Cost Reduction to Date
Major Milestones & Future Solicitations

FY 2010
- RFI Released (4/14/10)
- Issue FOA (08/27/10)
- Applications Due (11/05/10)
- SO Selection (02/21/11)
- GO/NO GO Decisions

FY 2011
- Awards Made
- Complete Standards for metrology of PEM FCs

FY 2012
- In-Line Measurement of MEA Fab
- Models for MEA Perf.
- DEMO Pilot Scale Processes

FY 2013
Focus on progress toward cost goals and early market applications.

PEM
- Establish Quality Assurance (QA) protocols
- Validate Manufacturing Processes and Quality Control
- Achieve quantified near term polymer fuel cell cost targets
- Develop process models and initiate research for HT stationary power

HTFC
- Conduct Model Analysis
- Award HTFC Projects
- Reduce capital cost to competitive range with out incentives
• This is a review, not a conference.
• Presentations will begin precisely at the scheduled times.
• Talks will be **20 minutes** and **Q&A 10 minutes**.
• Reviewers have priority for questions over the general audience.
• Reviewers should be seated in front of the room for convenient access by the microphone attendants during the Q&A.
• Please mute all cell phones, BlackBerries, etc.
Reviewer Reminders

• Deadline for final review form submittal is **June 18th**.

• ORISE personnel are available on-site for assistance. A reviewer lab is set-up in room 8216 and will be open Tuesday –Thursday from 7:30 AM to 6:00 PM and Friday 7:30 AM to 3:00 PM.

• Reviewer feedback session – **Friday, at 12:30pm (after last Manufacturing R&D session)**, in this room.
For More Information

Fuel Cell Technologies Program

Manufacturing R&D Team

Pete Devlin
(202) 586-4905
Peter.Devlin@ee.doe.gov

Nancy Garland
202-586-5673
Nancy.Garland@ee.doe.gov

Field Office Project Officers:

Jesse Adams
Lea Yancey
Reg Tyler