Hydrogen from Glycerol: A Feasibility Study

S. Ahmed, D. Papadias
Argonne National Laboratory

Presented at the 2010 Hydrogen Program Annual Merit Review Meeting
Washington DC, June 8, 2010

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Project Overview

Timeline
- Project Start: October 2009
- Project End: TBD

Barriers
- D. Feedstock Issues
- E. Greenhouse Gas Emissions

Budget
- FY10 - $100K + TBD

Partners
- TBD
Relevance - Technical Overview

Background
- The rapid growth in biodiesel production has led to an abundance of glycerol
- The crude glycerol, containing salts and methanol, has to be disposed as hazardous waste

Opportunity
- The alcohol and water content in crude glycerol is acceptable for reforming
- Secondary products from crude glycerol are attractive to biodiesel producers
Relevance - Glycerol can contribute to the mix of feedstock used in the H_2 refueling infrastructure

- Glycerol, a product of biomass and animal fats, is a renewable resource
- As a liquid, glycerol has high energy density (heating value) and is easy to transport
- Glycerol can be converted to H_2 to refuel fuel cell vehicles
 - Glycerol can also be used by reformate-based stationary fuel cell systems
- The hydrogen can be generated at or close to biodiesel production facilities
- Glycerol production capacity (2008) can yield 200,000 kg of H_2 per day
Objective

- Evaluate the economic feasibility of producing hydrogen from glycerol derived as a byproduct of the biodiesel industry
 - For the distributed production of hydrogen
 - Based on the steam reforming of glycerol, followed by purification using pressure swing adsorption
Approach

- Review the availability and price of glycerol
- Evaluate hydrogen-from-glycerol process at a distributed hydrogen production facility using systems analysis
- Estimate cost of hydrogen and its sensitivities
Technical Accomplishments and Progress

Glycerol supply and price

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Biodiesel</td>
<td>19.0 10^9 lb/year</td>
<td>5.2 10^9 lb/year</td>
<td>3.8 10^9 lb/year</td>
<td>2.0 10^9 lb/year</td>
<td>3 – 10 cents/lb</td>
<td>40 – 50 cents/lb</td>
</tr>
<tr>
<td>Glycerol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Technical Accomplishments and Progress
Systems analysis was followed by cost estimation using H2A

Production Unit
- Crude Glycerol Feed
- Steam Reformer
- Water Gas Shift Reactor
- Pressure Swing Adsorption Unit for H₂ Purification

Refueling Station
- Compression, Storage, and Dispensing

Cost Analysis
- H2A
Base Case: Converting glycerol to hydrogen with an efficiency\(^{(a)}\) of 72%

\[\text{Efficiency} = \frac{H_2 - \text{LHV}}{(\text{Glycerol LHV} + \text{NG LHV} + \text{electricity})} \times 100 \]

\[\text{Yield} = \left(\frac{\text{moles of } H_2}{7 \times \text{moles of Glycerol}} \right) \times 100 \]

\(^{(a)}\) H\(_2\)-yield = 69%
Technical Accomplishments and Progress
Base Case: Cost of H₂ from glycerol is estimated at $4.86/kg

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Units</th>
<th>H₂A (v2.1.3) Glycerol</th>
<th>H₂A (v2.1.3) Ethanol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production Unit Energy Efficiency</td>
<td>%</td>
<td>72.0</td>
<td>72.0</td>
</tr>
<tr>
<td>Operating Capacity Factor</td>
<td>%</td>
<td>85.2</td>
<td>85.2</td>
</tr>
<tr>
<td>Production Unit Capital Cost (Uninstalled)</td>
<td>$</td>
<td>1.0M</td>
<td>1.0M</td>
</tr>
<tr>
<td>Feedstock Cost</td>
<td>$/gal</td>
<td>1.07 (0.10 ¢/lb)</td>
<td>1.07</td>
</tr>
<tr>
<td>Hydrogen Cost</td>
<td>$/kg</td>
<td>4.86</td>
<td>4.83</td>
</tr>
</tbody>
</table>
Technical Accomplishments and Progress

Feedstock and capital costs are the main contributors to the cost of hydrogen.

- **Feedstock**: $2.12/kg (44%)
- **Production Unit (PU)**: $2.97/kg (61%)
- **Capital RS**: $1.26/kg (26%)
- **Refueling Station (RS)**: $1.88/kg (39%)
- **Variable + O&M**: $0.32/kg (7%)
- **Capital PU**: $0.53/kg (11%)
Technical Accomplishments and Progress

Glycerol price needs to be <5.2 cents/lb ($0.55/gal) to meet the hydrogen cost target of $3.80/kg
Technical Accomplishments and Progress
Changing the cost of H₂ by 5% would require
40% change in capital cost or,
11% change in feedstock price
Technical Accomplishments and Progress

Hydrogen yield improves with higher PSA recovery, but requires more natural gas to meet reforming energy needs.

![Graph showing PSA recovery vs H2-Yield and Efficiency](image_url)

- **H2-Yield** increases with higher PSA recovery.
- **Efficiency** also increases with higher PSA recovery.

![Graph showing PSA recovery vs Feedstock and Utility Usage](image_url)

- **Electrical (kWh/kg-H2)** decreases as PSA recovery increases.
- **Glycerol (gal/kg-H2)** decreases as PSA recovery increases.
- **NG Nm³/kg-H2** increases as PSA recovery increases.
Technical Accomplishments and Progress
A hydrogen cost of $3.80/kg may be achievable with process maturity

<table>
<thead>
<tr>
<th></th>
<th>“Better”</th>
<th>Base</th>
<th>“Worse”</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂ Cost</td>
<td>$3.80/kg</td>
<td>$4.86/kg</td>
<td>$5.90/kg</td>
</tr>
<tr>
<td>Feedstock Cost</td>
<td>$0.74/gal</td>
<td>$1.07/gal</td>
<td>$1.58/gal</td>
</tr>
<tr>
<td></td>
<td>7 cents/lb</td>
<td>10.2 cents/lb</td>
<td>15 cents/lb</td>
</tr>
<tr>
<td>Efficiency</td>
<td>74%</td>
<td>72%</td>
<td>72%</td>
</tr>
<tr>
<td>Capital (PU)</td>
<td>$750K</td>
<td>$1M</td>
<td>$1M</td>
</tr>
<tr>
<td>Plant Capacity Factor</td>
<td>95%</td>
<td>85.2%</td>
<td>85.2%</td>
</tr>
</tbody>
</table>
Technical Accomplishments and Progress

Some Projections

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>US Crude Glycerol Produced from Biodiesel (2008)</td>
<td>0.52 10^9 lb/year</td>
</tr>
<tr>
<td>H₂ from Glycerol (Base Case)</td>
<td>0.505 kg-H₂/gal-glycerol</td>
</tr>
<tr>
<td>H₂ from Crude Glycerol</td>
<td>55 10^3 kg-H₂/day</td>
</tr>
<tr>
<td>Distributed H₂ Production Center Capacity (operating at 85% of capacity)</td>
<td>1275 kg/day</td>
</tr>
<tr>
<td>No. of Distributed H₂ Production Centers</td>
<td>43</td>
</tr>
<tr>
<td>US Crude Glycerol Capacity from Biodiesel (2008)</td>
<td>19.0 10^9 lb/year</td>
</tr>
<tr>
<td>Capacity / Production Factor (2008)</td>
<td>3.7</td>
</tr>
</tbody>
</table>
Collaborations

- The system diagram was modified from a similar system used by DTI for hydrogen-from-ethanol
- Collaboration plans will depend on future direction of this project
 - Catalysis, clean-up, etc.
Summary

- Glycerol supply is outpacing its demand as a result of the biodiesel industry
 - Biodiesel industry, researchers are seeking high value secondary products from glycerol

- Glycerol is renewable and can be efficiently converted to hydrogen (72% efficiency is feasible)
 - When the PSA recovery is 80% or more
 - When the steam-to-carbon molar ratio is ≈3

- With crude glycerol at $1.07/gal (10 ¢/lb) the estimated H₂ cost is $4.86/kg
 - Cost of H₂ produced from glycerol is similar to that from ethanol

- The cost of hydrogen is highly sensitive to the price of the feedstock

- To achieve the target H₂ cost of $3.80 /kg with a glycerol price of 7 ¢/lb, need a combination of
 - Process efficiency of 74%
 - Capital cost of $750 K
 - Plant operating capacity of 95%
Proposed Future Work

- Extend systems analysis to evaluate most promising production process and operating conditions
 - Define range of operating conditions (T, P, S/C, ...)
- Identify key challenges with glycerol reforming
 - Feed delivery, conversion, coke formation, crude glycerol cleanup, etc.
- Address technical barriers
 - Feed delivery, catalysis, reactor design, etc.)
Supplementary Slides
The new version of H2A increases the contribution of the Refueling Station costs.

Storage, Compression, Dispensing Capital Cost
- Storage, Compression, Dispensing
- Capital Cost

Variable O&M including Utilities
- Variable O&M including Utilities

Fixed O&M
- Fixed O&M

Feedstock Cost
- Feedstock Cost

Capital cost
- Capital cost

H2 Cost Contribution ($/kg)

2012 target
- Multi-Year Research, Development & Demonstration Plan (Ethanol case)
 - H2A (v2.1.3)
 - Production Unit (60%)
 - Refueling Station (40%)

Ethanol
- Production Unit (60%)
- Refueling Station (40%)
- Capital cost
- Variable O&M including Utilities
- Fixed O&M

Glycerol
- Production Unit (60%)
- Refueling Station (40%)
- Capital cost
- Variable O&M including Utilities
- Fixed O&M

*H2A (v2.1.3)