DEVELOPING IMPROVED MATERIALS TO SUPPORT THE HYDROGEN ECONOMY

Michael Martin
Edison Materials Technology Center
June 7, 2010

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

Timeline
• Start Date: Sep 2004
• End Date: Jun 2009
• Complete

Budget
• FY04: $2.945 M
• FY05: $2.961 M
• FY06: $2.475 M
• FY08: $.984 M
• DOE Total: $9.37 M
• Recipient Share: >$10.4 M

Barriers
• Hydrogen Delivery / Safety
 • Hydrogen Leakage & Sensors
 • Leak Detection Technology
• Hydrogen Production
 • Reformer Capital Cost - O&M Cost
• Manufacturing R&D
 • Lack of High-Volume MEA Proc.
 • Manual Stack Assembly
• Fuel Cells
 • Cost/Performance – Catalysts / MEA

Partners
• Makel Engineering - H₂ Sensor
• Precision Energy - Membrane Processing
• Catacel Corp. - Reformation
• Faraday Technology - Catalyst Application
• NexTech Materials - H₂ Sensor
• Powdermet, Inc. – H₂ Storage
• UltraCell Corp - Fuel Cell Power
Edison Materials Technology Center (EMTEC) used goals set forth in the USDOE Hydrogen, Fuel Cells & Infrastructure Technologies Program Plan to find and fund projects which satisfied these criteria:

- Demonstrate feasibility with job creation potential
- Cross-cutting breakthrough materials technology
- Stimulate near term manufacturing-based commercialization
- Patterned on EMTEC Core/Commercial Technology (CT) model
Target Technologies and Barriers

<table>
<thead>
<tr>
<th>Target Technology</th>
<th>DOE Barriers Addressed</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂ Generation from Renewable Liquid Feedstocks</td>
<td>Fuel Processor Capital Costs, O&M Cost</td>
</tr>
<tr>
<td>H₂ Generation by Water Electrolysis</td>
<td>Renewable Integration</td>
</tr>
<tr>
<td>H₂ Generation by Photo-electrochemical Electrolysis</td>
<td>Materials Efficiency, Bulk Materials Synthesis, Device Configuration Designs</td>
</tr>
<tr>
<td>H₂ Separation Materials – Catalysts, MEA</td>
<td>Cost, Impurities</td>
</tr>
<tr>
<td>H₂ Generation from Biomass and Coal</td>
<td>Capital Cost and Efficiency</td>
</tr>
<tr>
<td>H₂ Storage by New Materials and Concepts</td>
<td>Efficiency, Cost, Weight and Volume</td>
</tr>
<tr>
<td>H₂ Processing: Sensors, Delivery, Purification</td>
<td>Hydrogen Leakage & Sensors Leak Detection Technology, Durability, Cost</td>
</tr>
</tbody>
</table>
Approach

- EMTEC solicited projects that:
 - Have industry relevance
 - Are appropriately resourced
 - Are aligned with EERE Hydrogen Goals
 - Address multiple DOE Barriers
 - Have near term commercialization viability

- EMTEC has extensive experience managing collaborative technology projects

- EMTEC has an established business model for selection and management of technology commercialization projects
EMTEC

- EMTEC is one of 7 State of Ohio Edison Centers
 - Established in 1987 by Ohio Gov. Celeste
 - 501c(3) Not-for-Profit

- Membership Based with Over 120 Industry, University, and Government Members

- Virtual – We Own no Major Capital Equipment

- Access to Over $2B in State-Of-The-Art Facilities

- Significant Experience in Ceramics, Metals, Polymers, and many Material Processes - expanded focus includes Instruments, Controls, & Electronics (ICE)
EMTEC Interactions/Collaborations

- Air Force Research Laboratory
 - Technology transfer program
 - Commercialization & business development
 - SBIR & Commercialization pilot program support

- State of Ohio
 - Department of Development Technology Division
 - Third Frontier Program
 - Multiple fuel cell projects
 - Photovoltaic Innovation Center (PVIC)
 - Ohio Fuel Cell Coalition

- Business Outreach Services
 - Procurement Technical Assistance Center (PTAC)
 - International Trace Assistance Center (ITAC)

- EMTEC Membership Technical Steering Committee (TSC)
PARTNERS
Low Cost MEMS Hydrogen Sensor for Transportation Safety
Makel Engineering, Inc.

- **DOE Barriers Addressed:**
 - Control and safety
- **Total Project Value:** $736,656
- **Goals and Objectives:**
 - Advanced hydrogen sensor system for hydrogen powered transportation applications
 - Provides the means for low cost, compact, low power, and miniaturized systems suitable for mass production
- **Accomplishments:**
 - Prototype H₂ sensor developed and automotive testing initiated
 - R&D 100 Award (2006)
 - Nano 100 Award (2006)
- **Future Work:**
 - Nanomaterial enhancements, product testing with automotive partners, improved manufacturability at reduced cost, and market development

EMTEC - Accelerating Technology to Market
2006 R&D 100 Award
“Ultrafast Nanostructured Hydrogen Sensor”
DOE Barriers Addressed:
- Materials Efficiency, Bulk Materials Synthesis, Device Configuration Designs

Total Project Value: $935,386

Goals and Objectives:
- Low cost manufacture of PEM MEAs for hydrogen and/or electric generation through reel-to-reel manufacture technology

Accomplishments:
- MEA Bonder System produced.
- Demonstrated capability to continuously manufacture 3-layer MEAs
- Membranes can be used to generate hydrogen

Future Work:
- Refine catalyst utilization and manufacturing processes
PARTNERS
Novel Stackable Structural Reactor (SSR™) for Low-cost Hydrogen Production - Catacel Corp.

- **DOE Barriers Addressed:**
 - Fuel Processor Manufacturing, Operation and Maintenance, Refomer Capital Cost – O&M Cost

- **Total Project Value:** $692,737

- **Goals and Objectives:**
 - Drop-in replacement for the loose ceramic catalyst media in the stationary steam reforming process
 - Allows 50% additional capacity from given plant size, or 10% energy savings

- **Accomplishments:**
 - Lab evaluations complete, pilot manufacturing installed
 - Pilot plant install and test

- **Future Work:**
 - Market entry
DOE Barriers Addressed:
- Efficiency, Cost, Weight and Volume.

Total Project Value: $1,034,445

Goals and Objectives:
- Demonstrate technical and economic feasibility of Tunable Diode Laser Absorption Spectrometer (TDLAS) for analysis within PEM fuel cell bipolar plate channels

Accomplishments:
- Nanoscale catalysts for hydrogen generation
- Bipolar plate fabrication for PEM fuel cells with integrated sensors/shunts
- Briefed DOE

Future Work:
- Evaluate strategic partnerships for bipolar plate applications
- Product development and market evaluation

PARTNERS
DOE Barriers Addressed:
- Efficiency, Cost, Weight and Volume.

Total Project Value: $548,950

Goals and Objectives:
- Advance prototype multi-fuel SOFC system for commercialization

Accomplishments:
- Beta prototype demonstration in plant with soybean/vegetable oil based fuels

Future Work:
- Continue test of prototype system with multi-fuel sources – select candidate test site
- Improve long term cell and stack component performance
- Product development and commercialization
DOE Barriers Addressed:

Total Project Value: $794,602

Goals and Objectives:
- Design low-cost H₂ safety sensor that is sensitive and selective to H₂.
- Take technology from bench-top to prototype level, ready for product launch to market.

Accomplishments:
- Demonstrated high selectivity to hydrogen without interference from CO, CH₄, H₂O, or silicone vapors; a-prototypes have been tested with excellent performance for 2000+ hours.
- Design for manufacturing; Pilot manufacturing; Market entry

Future Work:
- Operational validation
DOE Barriers Addressed:
- Weight and volume, efficiency, portability

Total Project Value: $727,142

Goals and Objectives:
- High-strength microballoons by chemical vapor deposition for high volume hydrogen storage
- Store 6 wt. % H2 in balloons, >4 wt. % in system for 2mm balloons
- Collaborators include AF Research Labs, Precision Energy and Technology, and Protonex

Accomplishments:
- Verified microballoon extended duration H₂ storage and completed initial system design studies.

Future Work:
- Evaluate microballoon technology for other uses.
DOE Barriers Addressed:
- Efficiency, Cost, Weight and Volume

Total Project Value: $425,000

Goals and Objectives:
- Develop and Demonstrate technology with potential customers to accelerate next level of funding support and purchase order generation.

Accomplishments:
- Testing at “alpha” sites such as the Federal Bureau of Investigation (FBI), U.S. Forestry Service, U.S. Marine Corp, and the Air Force Research Laboratory (AFRL).
- JRTC Technology Readiness Level (TRL) 7 status
- Follow-on Ohio Third Frontier Award

Future Work:
- Secure tooling for continued long-term material evaluation.
- Field additional prototypes for feedback from Alpha sites.
- Continue performance and form factor work for manufacturing plant outlines.
PARTNERS
Other Notable Success Stories

- **Catacel Corp** - Scalable Steam Methane Reformer
 - $1M Ohio Third Frontier Program follow-on (heat exchanger)
- **Midwest OptoElectronics (MWOE)** – PV Hydrogen Generation
 - Formed into **Xunlight Corporation** - Flexible thin-film PV
 Substantial New Capital Investment
- **Praxair** – Improved Hydrogen Liquefaction Process
 - $2.1M DOE follow-on for improved ortho-para conversion process
- **Inorganic Specialists** – Nanofiber Paper for H₂ Generation
 - $2M ARPA-E Program Award – Nanofiber Paper as Lithium-Ion Anode
- **Chemsultants** – Roll-to-Roll Solution Casting for PEMs
- **Proton Energy** – High Pressure Electrolyzer for Backup Power Systems
- **Protonex** – Methanol Reformed Hydrogen for PEMs
Summary

- EMTEC manages a program with a DOE cooperative agreement in Hydrogen, Fuel Cells & Infrastructure Technologies

- Program featured 38 individual, topically-related projects
 - Phased Projects - based on success
 - 7 Active Phase III Projects

- Each project targets at least one DOE technical barrier

- Successful projects continue to generate jobs and marketable products or processes