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Overview

• Project Start Date: May 2005; on-hold in FY 06
• Project End Date: Project continuation and 

direction determined annually by DOE
• ≈20% Complete

Timeline
• (A) Reformer Capital Cost
• (B) Reformer Manufacturing
• (C) Operation/Maintenance
• Membranes also address 

various cross-cutting barriers. 
(Barriers N, P, R).

Barriers

• Total Project Funding 
-DOE share: 100%

• Funding received in FY09: $70K
• Funding for FY10: $100K

Budget
• Directed Technologies, Inc.
• Other Argonne divisions
• Work is co-sponsored by FE-NETL. 
• Project Lead: Argonne National Laboratory 

Partners
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Relevance - Objectives

 Overall objective is to develop a compact, dense, ceramic membrane 
reactor that meets the DOE 2017 cost target of <$3.00/gge for producing 
hydrogen by reforming renewable liquids.

 Reactor would use oxygen transport membrane (OTM) to supply pure 
oxygen for reforming renewable liquids. Initial focus (FY05-FY07) on 
reforming natural gas was changed to ethanol (EtOH) reforming in FY08.

 Objectives during past year were to use OTM to reform EtOH at ≤700°C 
and generate data for detailed analysis to identify benefits of approach.

 Relevance: Membrane technology provides the means to attack 
barriers (listed on slide #2) to the development of small-scale hydrogen 
production technology.
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Relevance to the Overall DOE Objectives
This project addresses barriers:
A(Reformer Capital Costs) by providing low-cost, high-purity 
oxygen in a compact, appliance-type membrane reactor
B(Reformer Manufacturing) by developing compact membrane 
units that can be made using low-cost manufacturing methods,
C(Operation and Maintenance) by providing simple, robust 
membrane systems that require little maintenance,
N(Selectivity) by transporting pure oxygen for reforming (avoiding 
formation of NOx), 
P(Flux) by developing new OTMs with higher flux, and
R(Cost) by using low-cost membranes to increase H2 production. 

Goal: Reduce capital costs and unit size by developing 
cost-effective, small-scale reformer technology that 
increases efficiency, selectivity, and durability.
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Approach - Reforming Ethanol with OTM

-OTM enhances ethanol reforming by supplying pure oxygen from air:
• Increases EtOH conversion
• Enhances catalyst performance by preventing coke formation

-Concept proven by industrial consortium: Reforming methane with OTM 
reduced costs by ≈30-40% and  energy consumption by ≈30%.
-A detailed system analysis has been initiated to determine the cost and 
energy benefits of OTM.
-In this project, we are generating necessary data for the detailed analysis.

Water Gas Shift
CO+H2O=CO2+H2

H2 Separation
PSA or HTM

Pure H2

CO2 for 
Sequestration
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Uniqueness of Argonne’s Approach
Pure oxygen is used for reforming rather than air; cost and energy 

savings from using OTM to reform methane have been proven
-avoids NOx formation/separation

Potential Benefits:
 Incorporates breakthrough membrane separation technology
 Increase EtOH conversion
Enhance catalyst performance by preventing coke formation
Reduce foot-print area for the reformer
Skid-mounted units can be produced using currently available, 

low-cost, high-throughput manufacturing methods
Compact design reduces construction costs
Uses simple, robust membrane systems that require little 

maintenance
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Approach - Milestones

Project Milestones % Comp. Progress Notes

Perform ethanol reforming studies at 
temperatures ≤700°C and generate data 
for detailed analysis.

20%
Did EtOH reforming study 
(without steam addition) at 
500-700°C.

Have third party (Directed Technologies, 
Inc.) perform detailed system analysis. 5% A subcontract has been 

established with DTI.

Reform ethanol using OTM in presence 
of catalyst. 5% Investigation of catalyst 

candidates has begun.

Evaluate chemical stability of OTM 
during reforming of bio-ethanol. 5%

OTM was stable for  ≈100 h 
during EtOH reforming at 
≤700°C with  ≈7% EtOH in 
carrier gas.
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Timeline for Reforming Ethanol using OTM

FY09 FY10 FY11 FY12 FY13 FY14 FY15

Detailed analysis of cost and energy benefits 
Input on 
Materials, 

Performance, 
& cost

Deliver 
Final 

Report

Input on 
Module 

Performance 
& cost

Address Design & Scale-up issues 
in collaboration with partners

Transition
to Industry

Go/No
-Go

Down-select 
an OTM

OTM Materials 
Development

Go/No
-Go

Go/No
-Go

Fabrication & Testing of 
Tubular Membrane Modules 
for Reforming

Long term 
Stability & 
Durability Test

Note: This chart is based on the assumption of sufficient 
funding. Reduced funding will extend the timeline.

Incorporate 
Catalysts in 
Tubular Modules

Go/No
-Go

Testing of 
Catalysts
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Technical Accomplishments/Progress/Results 
Reforming Ethanol with La-Sr-Cu-Fe-O (LSCF) Tube (Without Catalyst)

OTM: LSCF Tube (30 µm)
Fuel: 7% EtOH/balance N2

O2 Source: Air 
Temperature: 550°C
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 OTM significantly enhanced EtOH conversion at low T 
(≤700°C). Higher O2 flux should further enhance conversion. 
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Technical Accomplishments/Progress/Results (Cont.)
Ethanol Reforming (Effects of EtOH Conc., H2O in Feed)

OTM Thickness: 1.5 mm
Fuel: 7-13% EtOH in N2

O2 Source: Air 
Temperature: 700°C

 Higher H2 production rate can be achieved with 
higher EtOH concentration and H2O/EtOH in feed. 
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Technical Accomplishments/Progress/Results (Cont.)
Ethanol Reforming (Effect of Oxygen Flux)

OTM: LSCF Tubes
Fuel: 7% EtOH/balance N2

O2 Source: Air 
Temperature: 700°C
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 Higher O2 flux with thin-film tube is evident in much 
higher production rates for CO2 and H2O. Slightly lower H2
production rate for thin-film tube, despite its higher EtOH 
conversion, indicates importance of catalyst.
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Technical Accomplishments/Progress/Results (Cont.)
Thinner OTM Enhances Hydrogen Production Rate

LSCF Thin-film OTM Tube 
La0.7Sr0.3Fe0.2Cu0.8Ox

 OTM increased H2 production at low T (≤700°C) and 
could increase it significantly more by using new OTM 
composition (BFZ1) and/or adding catalyst. 
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OTM: LSCF Thin-film Tube 
OTM Thickness ≈30 µm
Fuel: 7% EtOH/balance N2

O2-Source Side: Air
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Technical Accomplishments/Progress/Results (Cont.)
Optimizing OTM Performance by Doping

Temperature (°C)

1000/T (K-1)

O
2

Fl
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Thickness ≈1 mm
O2-permeate Side: He
O2-Source Side: Air 

 Proper doping 
suppresses phase 
transition, significantly 
increasing oxygen flux 
at temperatures ≤700°C. 
New OTM (BFZ1) could 
significantly enhance 
EtOH conversion at 
lower temperatures.
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Accomplishments/Progress/Results (Cont’d.)
Preliminary Analysis of Hydrogen Cost vs. Station Capacity

(Reforming of Ethanol using OTM)
Hydrogen Cost vs Station Capacity
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Production Cost (Including
ethanol)
Total Cost

Station Size     Production Cost     Total Cost
(kg/day)     Incl. Ethanol ($/kg)      ($/kg)
250                  3.52 5.39
500                  3.04                        4.29
750                  2.84                        3.81

1000                  2.73                        3.59
1250                  2.65                        3.44
1500                  2.60                        3.31

•Total capital investment per station: $3.2 M (1500 kg H2/day)

•Annual operating cost of $1.8 M of which $1 M is for ethanol 
(@$1.07/gal)

•Energy Efficiency (not including electricity): Energy out in the 
form of H2/Energy in Ethanol + Energy in NG to produce 
steam = 68%

Total Hydrogen Cost @1500 kg/day

Production

Ethanol

Compression

Storage
Dispensing $0.71 (21.5%)

$1.89 (57%)

$0.24 (7.3%)

$0.35 (10.6%)
$0.12 (3.6%)

Total Cost = $3.31/kg H2
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Accomplishments/Progress/Results (Cont’d.)
Preliminary Analysis of Total Hydrogen Cost vs. Ethanol Cost

Using OTM to Reform Ethanol (@1500 Kg/day) 

Hydrogen Cost vs Ethanol Cost
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Ethanol Cost     Total H2 Cost
($)                         ($/kg) 
0.75                       2.75
1.00                       3.19
1.50                       4.07
2.00                       4.96
2.50                       5.84
3.00                       6.72

H2A Analysis done by 
Jerry Gillette @ Argonne

• Total cost of H2 increases from $3.19 to $4.96/kg when cost of ethanol is 
increased from $1 to $2/gal.
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Collaborations
 Directed Technologies, Inc. (Dr. B. James)

– DFMA (Design for Manufacturing and Assembly) cost assessment and 
H2A analysis

 Chemical Science & Engineering Division, Argonne (Dr. S. Ahmed) 
“Pressurized Steam Reforming of Bio-Derived Liquids for Distributed Hydrogen 
Production (PD-003, Tuesday, June 8, 9:30 am).

─ Catalysts, reactor design, and ethanol reaction chemistry
 Georgia Tech (Prof. M. Liu)

─ Graduate students’ Ph.D. thesis research on mixed-conductors
 University of Florida (Prof. E. Wachsman, presently at University of Maryland)

─ Graduate student’s Ph.D. thesis research on modeling of solid-state 
defects in mixed-conductors

 University of Houston (Prof. K. Salama)
─ Mechanical property measurement

 National Energy Technology Laboratory (Dr. D. Driscoll & Dr. B. Morreale)
─ Co-sponsor of the project; development of gas transport membranes for 

hydrogen production from coal
 Professors’ expertise is transferred using graduate students and post-docs as conduit.
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Proposed Future Work

Demonstrate proof-of-concept and generate key data for performing 
detailed economic analysis.

Test performance of OTM materials during ethanol reforming at lower 
temperatures (T ≤ 700°C).

–Study effect of EtOH concentration, gas flow rates, OTM thickness.

Reform ethanol using OTM in presence of catalyst(s).

Evaluate chemical stability of OTM during reforming of ethanol.

Have Directed Technologies, Inc. (DTI) perform detailed cost and energy 
analysis to judge the merits of using OTM to enhance H2 production by 
ethanol reforming.
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SUMMARY
 Dense ceramic membrane reactor is being developed to cost-effectively 

produce hydrogen by reforming renewable liquids.

 Data are being generated for a detailed system analysis to determine 
the most cost and energy benefits.

 Reactor would use OTM to supply pure O2 for reforming.

 Benefits of OTM
[Frusteri et al., Intl. J. Hyd. Energy, 31, 2193-2199 (2006)]:
– Injection of oxygen increases EtOH conversion and enhances 

catalyst performance by reducing coke formation.

 Results show that catalyst development will be critical to fully capitalize 
on benefits of OTM during ethanol reforming.
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