Photoelectrochemical System for Hydrogen Generation (PHESHYG)

Juan Hodelin, Ph.D. (presenter)
Alexander Parfenov, Ph.D.
Physical Optics Corporation
June 7, 2010

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
Overview

Timeline
- Start: 06/20/2007
- End: 08/14/2010
- ~75% Completed

Barriers
- Y: Materials Efficiency
- AC: Device Configuration Designs
- AD: Systems Design and Evaluation

Budget
- Total Project Funding: $849,996
 - DOE share: $849,996
 - Contractor share: $0
- Funding received in FY09: $359,355
- Funding for FY10: $389,644

Partners
- National Renewable Energy Lab (NREL)
- PEC Working Group
Relevance - Objectives

Project Objective: To demonstrate electrodeposited II-VI photoelectrodes as viable, low cost, materials for solar hydrogen generation and design a prototype reactor system.

2010 Objective: Assemble prototype photoelectrochemical (PEC) cell array based on II-VI photoelectrodes along with cost analysis.

DOE 2007 MYPP TARGETS

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>2013 Target</th>
<th>2018 Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usable Band gap</td>
<td>2.3 eV</td>
<td>2.0 eV</td>
</tr>
<tr>
<td>Chemical Efficiency (EC)</td>
<td>10 %</td>
<td>12%</td>
</tr>
<tr>
<td>Solar-to-Hydrogen Efficiency (STH)</td>
<td>8 %</td>
<td>10%</td>
</tr>
<tr>
<td>Durability</td>
<td>1000 hrs.</td>
<td>5000 hrs.</td>
</tr>
</tbody>
</table>

How approach relates:
- Narrow band gap II-VI materials
- Use of multilayers and p-type materials
- System level design and fabrication

PEC-based Solar Reactor Array
Relevance - Barriers

<table>
<thead>
<tr>
<th>Barrier</th>
<th>POC’s Approach</th>
<th>Challenge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y: Materials Efficiency</td>
<td>Address efficiency barrier by using narrow band gap II-VI materials CdS ($E_g = 2.3$ eV), ZnTe ($E_g = 2.3$ eV), and CdSe ($E_g = 1.7$ eV)</td>
<td>Overcoming reduced efficiency due to use of electrochemical deposition (polycrystalline film), which inhibits carrier transport</td>
</tr>
<tr>
<td>AC: Device Configuration Designs</td>
<td>Developing “multijunction” structure to allow use of both narrow band gap absorbing material and wider band gap, more durable materials</td>
<td>Engineering a high quality junction interface with solution processing techniques</td>
</tr>
<tr>
<td></td>
<td>Electrochemical deposition (solution processing) is a scalable, cost-effective technique that is widely used in manufacturing</td>
<td></td>
</tr>
<tr>
<td>AD: Systems Design and Evaluation</td>
<td>Designing and fabricating a prototype scale reactor (~1 m² area) to explore materials, components, geometries, and other considerations necessary to productize PEC cells</td>
<td>Fabricating a large number of good quality photoelectrodes</td>
</tr>
<tr>
<td></td>
<td>Applying economic modeling to estimate cost of hydrogen from reactor cell at production level</td>
<td>System level testing</td>
</tr>
</tbody>
</table>
Approach - Milestones

Overall technical approach: Electrodeposited II-VI Materials

<table>
<thead>
<tr>
<th>Item</th>
<th>Action</th>
<th>Result/Comment</th>
</tr>
</thead>
</table>
| **2009 Milestone:** | downselected II-VI materials to 2 combinations (one n-type, one p-type) | (1) CdS(n)/ZnS(n) multijunction: strong absorption in CdS increases efficiency while ZnS increases durability
(2) ZnTe (p-type): use of low band gap p-type material with promise for durability by eliminating photocorrosion |
| **2010 Planned Milestones:** | (1) Design and fabrication of PEC cell reactor array including materials evaluation and cost analysis
(2) Demonstration of system test results | (1):
- 25% complete
- Timeline depends on photoelectrode fabrication
(2): Developing collaborations for system tests |
| Relation to past efforts: | - II-VI materials approach | - Approach targets weaknesses of II-VI materials previously studied |
| Relation to current efforts: | - II-VI materials approach
- PEC Reactor Design | - Complements current work on oxides, III-V, multijunctions
- Supplements work on system level studies and economic analysis |
PHESHYG Phase II Objectives: (from proposal)

Objective 1. Optimization and Refinement of the A2B6 Semiconductor PE Materials (100% complete)

Objective 2. Characterization of the A2B6 Semiconductor-Based PE Materials (80% complete)

Objective 3. Systematic Reorganization of the A2B6-Based Photoelectrode and Development of Large-Area PE Panels (80% complete)

Objective 4. Development of Scaled-up Prototype of PHESHYG Cell (80% complete)

Objective 5. Integration of the Scaled-up Prototype PHESHYG System, and Evaluation of Its Performance (25% complete)

Objective 6. Evaluation of Application Scenarios for the PHESHYG Technology (70% complete)
Technical Accomplishments:

Electrodeposition of CdS/ZnS Bilayer on ITO

- Fabricated bilayer CdS/ZnS films using single step ED process. (Obj. 1)

- Type II heterojunction allows carrier transport from CdS absorption layer to ZnS capping layer

- Weight ratio determined via EDX shows increased proportion of Zn over time
Technical Accomplishments:

UV-Vis Absorption Measurements

\[A \sim \frac{1}{E_g - h\nu} \]

- Linear coefficient of absorption
- \(E_g \): band gap energy
- \(h\nu \): energy of photon

\[
(Ah\nu)^2 = C'(h\nu - E_g)
\]

- Reduced band gap compared to bulk CdS (2.4 eV) attributed to reduced strain in chemically deposited film.

CdS/ZnS films show band gap in range of DOE target 2.0-2.3 eV. (Obj. 2)
Technical Accomplishments:

Cyclic Voltammetry Substrate Study

Films grown on ITO Substrates

Films grown on Ti Substrates

- Films can be grown on variety of conducting substrates
- CdS growth takes place before Cd2+ reduction, mediated by H+ reduction
- As a result, substrates with slow H+ reduction kinetics slow rate of film growth
- Selecting ITO and Ti for testing due to reduced kinetics mitigating effect of pinholes to substrate during testing

CV of CdS/ZnS Electrodeposition Solution

High overpotential for H+ reduction slows growth, limits substrate effects. (Obj. 1&2)
Technical Accomplishments:

3-electrode J-V and Photocurrent Measurements

Open Circuit Potential Measurement (vs. Ag/AgCl in 0.1 M H2SO4)

<table>
<thead>
<tr>
<th></th>
<th>OCP dark</th>
<th>OCP light</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCP dark</td>
<td>-0.069 V</td>
<td>-0.166 V</td>
<td>-0.097 V</td>
</tr>
</tbody>
</table>

- n-type behavior
- Vfb measurement still needed (light intensity here insufficient to flatten bands)

3-electrode J-V (37 uW/cm², Xe lamp)

• estimated efficiency $\eta_{STH} = 0.94\%$
 (with applied bias = 0.4 V vs. Ag/AgCl)

Biased Photocurrent (38 mW/cm², Xe)

Preliminary OCP, JV, and photocurrent measurements. Show $\eta_{STH} \sim 1\%$. (Obj. 2-3)
Technical Accomplishments:

Stability of as-deposited and Annealed CdS/ZnS

- Lifetime by extrapolation ~ 12 minutes under ~ 5 suns.
- Possibly due to non-uniform ZnS layer

Initial measurements of stability and annealing, improvements underway. (Obj. 2)
Technical Accomplishments:

ZnTe photoelectrode fabrication

<table>
<thead>
<tr>
<th>Property</th>
<th>Value/Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band gap energy, E_g(eV)</td>
<td>~2.20</td>
</tr>
<tr>
<td>Type of Conductivity</td>
<td>p</td>
</tr>
<tr>
<td>Type of PE</td>
<td>Photocathode</td>
</tr>
<tr>
<td>Stability</td>
<td>photo-corrosion may be stable as cathode</td>
</tr>
</tbody>
</table>

Stoichiometry from EDX:
- Zn: 55%, Te: 45% (+/- 15%)
 - *sensitive to deposition conditions*

XRD indicates primarily cubic ZnTe (squares) with small amount of hexagonal Te (triangles).

Fabricated ZnTe photoelectrodes and verified composition. (Obj. 1).
Testing in progress.
Technical Accomplishments:

PEC Reactor Design: 1st Generation

Sealed container with PEC
(electrolyte, counterelectrodes, photoelectrodes)

Benefits:
- Easy to scale-up
- Modular
- Novel approach
- Build using COTS

Individual photoelectrode
Same in a mount/connector
Mounted photoelectrode with seal

Outlet with H₂ delivery
Outlet with O₂ delivery

Created design based on commercially available components for prototyping. (Obj. 4)
Technical Accomplishments:

PEC Reactor 1st Generation Testing

Scaled Down Design

Fabricated 1st Generation Design

Test apparatus used electrolysis to generate H2/O2 in electrode locations

Design Improvements Identified:

- Reduce number of seals
- Increase counterelectrode area
- Review material selection
- Keep modular design and scalability

Fabricated and tested 1st design and identified key modifications needed. (Obj. 4)
Technical Accomplishments:

PEC Reactor 2nd Generation Design

- Modular
- Scalable
- Less seals needed
- Fabricated Prototype

Designed and fabricated 2nd generation design based on results from 1st tests. (Obj. 4-5)
Technical Accomplishments:

PEC Reactor Materials Testing

Material Weight Loss/Gain and in KOH (28% 4 weeks)

<table>
<thead>
<tr>
<th>Bottle #</th>
<th>Material</th>
<th>Initial Weight (g)</th>
<th>Final Weight (g)</th>
<th>% change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-empty-</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>PVC</td>
<td>0.961</td>
<td>0.965</td>
<td>0.416</td>
</tr>
<tr>
<td>3</td>
<td>Nickel</td>
<td>0.455</td>
<td>0.452</td>
<td>-0.659</td>
</tr>
<tr>
<td>4</td>
<td>Aluminum 6061</td>
<td>2.375</td>
<td>0</td>
<td>-100% (dissolved)</td>
</tr>
<tr>
<td>5a</td>
<td>Neoprene</td>
<td>1.233</td>
<td>1.235</td>
<td>+0.1622</td>
</tr>
<tr>
<td>5b</td>
<td>EPDM</td>
<td>0.05735</td>
<td>0.057</td>
<td>-0.61</td>
</tr>
<tr>
<td>6</td>
<td>Acrylic</td>
<td>0.966</td>
<td>0.970</td>
<td>+0.141</td>
</tr>
<tr>
<td>7</td>
<td>18-8 Stainless Steel</td>
<td>7.845</td>
<td>7.857</td>
<td>+0.1529</td>
</tr>
<tr>
<td>8</td>
<td>Viton® Fluoroelastomer</td>
<td>1.311</td>
<td>1.356</td>
<td>+3.432</td>
</tr>
<tr>
<td>9</td>
<td>Acrylic + epoxy</td>
<td>1.830</td>
<td>1.841</td>
<td>+0.601</td>
</tr>
<tr>
<td>10a</td>
<td>Nylon (hex nut)</td>
<td>0.846</td>
<td>0.856</td>
<td>+1.182</td>
</tr>
<tr>
<td>10b</td>
<td>Nylon 6/6 (screw)</td>
<td>0.224</td>
<td>0.233</td>
<td>+4.01</td>
</tr>
<tr>
<td>11a</td>
<td>Polyethylene (black)</td>
<td>0.415</td>
<td>0.416</td>
<td>+0.241</td>
</tr>
<tr>
<td>11b</td>
<td>Polyethylene (white)</td>
<td>2.003</td>
<td>2.010</td>
<td>+0.349</td>
</tr>
<tr>
<td>12a</td>
<td>PC/ABS (black)</td>
<td>1.797</td>
<td>1.846</td>
<td>+2.726</td>
</tr>
<tr>
<td>12b</td>
<td>ULTEM (creamy white)</td>
<td>0.504</td>
<td>0.519</td>
<td>+2.972</td>
</tr>
</tbody>
</table>

Reactor component testing in KOH identifies acrylic as viable component. (Obj. 4-5)

- Conducted reactor material analysis based on 1st generation testing conclusions
- More data analysis currently underway including H2SO4 tests

Discoloration

Material
Untested
Tested

[Image of material samples]
Technical Accomplishments:

PEC Reactor System Cost Analysis

<table>
<thead>
<tr>
<th>CdS/ZnS PE materials of 1 cm² (1 m² unit = 400 small PE cells 5x5 cm² each)</th>
<th>NRE² ($K)</th>
<th>Production Cost³ ($/unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Quantity 100 m²</td>
</tr>
<tr>
<td>Raw Materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemicals</td>
<td>COTS</td>
<td>$1.15</td>
</tr>
<tr>
<td>ITO glass</td>
<td>COTS</td>
<td>$3.20</td>
</tr>
<tr>
<td>Glassware</td>
<td>COTS</td>
<td>$0.15</td>
</tr>
<tr>
<td>Potentiostats (lifetime of 10 years)</td>
<td>COTS</td>
<td>$0.45</td>
</tr>
<tr>
<td>Sub Total</td>
<td>-</td>
<td>$4.95</td>
</tr>
<tr>
<td>Labor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synthesis processing</td>
<td>20</td>
<td>$0.83</td>
</tr>
<tr>
<td>Characterization/testing labor</td>
<td>10</td>
<td>$0.50</td>
</tr>
<tr>
<td>Sub Total</td>
<td>30</td>
<td>$1.33</td>
</tr>
<tr>
<td>TOTAL ($/m²)</td>
<td>30</td>
<td>$6.28</td>
</tr>
</tbody>
</table>

Initial H₂ cost estimate using above values ($/m²) with $\eta = 1\%$ and lifetime = 5 yrs. and the similar parameters to James et al. (2)

- Cost of hydrogen is: $14.34 - $15.02/kg despite low cost/m² due to low efficiency.

(2) 1 ton per day plant, excludes O&M costs, cost at plant gate (well-to-gate)
Collaborations

DOE H2 Program:

• Member of PEC Hydrogen Working Group
• John Turner (NREL-federal) : subcontracting for photoelectrode materials testing in progress
Proposed Future Work

<table>
<thead>
<tr>
<th>Item</th>
<th>Action</th>
<th>Comment</th>
</tr>
</thead>
</table>
| **2010 Planned Milestones:** | (1) Design and fabrication of PEC cell reactor array including materials evaluation and cost analysis
(2) Demonstration of system test results | (1) : - 25% complete
- Timeline depends on photoelectrode fabrication
(2): Developing collaborations for system tests |
| **2010 Selected Objectives:**
- Tests of ZnTe photoelectrodes
- Full study of sample annealing | - Particular emphasis on characterizing and improving stability through study of ZnS - CdS interface properties
- Need stronger collaboration for help testing samples |
| Obj. 4: Development of Scaled-up Prototype of PHESHYG Cell | - Perform reactor materials stability using other electrolytes
- Select materials for next prototype | - Materials selection directly influences reactor cost, lifetime, and O&M
- Selection will be based on resilience to electrolyte, UV/Vis transparency, H2 permeability and cost |
| Obj. 6: Evaluation of Application Scenarios for the PHESHYG Technology | - Refine H2 cost analysis using actual materials selected for PHESHYG reactor | - Build on work by B. James and H2A model |
Summary

Relevance:
- Demonstrate electrodeposited II-VI photoelectrodes as viable (i.e. meet band gap, and stability requirements), low cost, materials for solar hydrogen generation and design a prototype reactor system.

Approach:
- Downselected II-VI materials to 2 combinations: CdS/ZnS bilayer (n/n), ZnTe p-type

Accomplishments:
- Fabrication and characterization of CdS/ZnS and ZnTe films
- Absorption of CdS/ZnS structure acceptable (Eg ~ 2.2 eV)
- CdS/ZnS efficiency ~ 1 % with applied bias, 12 min. lifetime; optimization required
- Constructed and tested 1st generation PEC reactor cell using COTS components
- Designed and fabricated 2nd generation reactor based on test results
- Preliminary economic analysis performed showing strong dependence of cost on efficiency due to present low efficiency with potential improvements to $4/kg with $\eta = 4\%$

Collaboration:
- Developing testing collaboration with NREL, Member of PEC workgroup

Future Work:
- Refine PEC testing with CdS/ZnS, perform testing on ZnTe
- Assembly and integration of large area PEC reactor
- Refine economic analysis based on actual PEC reactor material costs