Safe Detector System for Hydrogen Leaks

Robert. A. Lieberman / Manal H. Beshay (PI/PM)
Intelligent Optical Systems, Inc.
June 9, 2010

Project ID #
SCS014

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

Time Line
- Start – June 2007
- Finish – June 2011
- 95% Complete

Budget
- Current Project funding: $1,189,374
 (DOE… $951,500, IOS share… $237,874)
- FY08/09 Project funding: $1,230,00
 (DOE… $984,000, IOS share… $246,000)
- Funding received in FY07: $495,000

MYPP Barriers/Targets
- **Delivery**: Barrier I. Hydrogen Leakage and Sensors
- **Storage**: Barrier H. Balance of Plant (BOP) Components
- **Safety**: Targets
 - (Also: Fuel Cells, Manufacturing, and Tech. Validation)

Partners
- Dr. Gerald Voecks – Advisor
- Dr. Angelo A. Lamola – Consultant
- Mr. Gerald Cole – Consultant
- NREL- Testing and Validation Provider
- Intelligent Optical Systems, Inc.– Program Lead
Project Goal:
- Select and finalize hydrogen sensor technology
- Design and fabricate scalable prototype sensors
- Investigate and establish end-user market size and cost analysis

Technical Objectives:

<table>
<thead>
<tr>
<th>Overall</th>
<th>CY 07/08</th>
<th>CY08/09</th>
<th>CY09/10</th>
</tr>
</thead>
<tbody>
<tr>
<td>♦ Integrate IOS’ proprietary hydrogen indicator chemistry into a complete optoelectronics package with well-defined sensing characteristics and a known end-use market</td>
<td>♦ Develop polymer based hydrogen sensor chemistry</td>
<td>♦ Finalize indicator chemistry immobilization into porous glass optrodes; reduce or eliminate sensitivity to moisture and oxygen with polymeric barrier coating</td>
<td>♦ Select and finalize hydrogen sensor chemistry that possess the optimum sensitivity, reliability, reproducibility, and aging performance</td>
</tr>
<tr>
<td>♦ Identify different formulations and physical embodiments to meet specific markets requirements</td>
<td>♦ Establish response to low levels of hydrogen in one or more candidate substrates</td>
<td>♦ Develop sensor polymers for two distinct embodiments: point sensors and distributed sensors</td>
<td>♦ Finalize and fabricate optoelectronic board for hydrogen leak sensor</td>
</tr>
<tr>
<td></td>
<td>♦ Establish good hydrogen sensitivity and response time in ambient air environment</td>
<td>♦ Optimize integrated optic sensor composition and fabrication</td>
<td>♦ Assemble packaged prototype hydrogen point sensor that meets DOE specifications</td>
</tr>
<tr>
<td></td>
<td>♦ Develop compact multi-channel test system</td>
<td>♦ Design and fabricate optoelectronic interface for integrated optic sensors</td>
<td>♦ Test and validate the full packaged prototype performance at NREL testing laboratories.</td>
</tr>
</tbody>
</table>
Barriers Addressed

- **Delivery:** Barrier I. Hydrogen Leakage and Sensors (MYPP page 3.2-20: “Low cost hydrogen leak detector sensors are needed”)

- **Storage:** Barrier H. Balance of Plant (BOP) Components (MYPP page 3.3-14: “Light-weight, cost-effective… components are needed…These include… sensors”)

- **Manufacturing:** Barrier F. Low Levels of Quality Control and Inflexible Processes (MYPP page 3.5-11: “Leak detectors… are needed for assembly of fuel cell power plants.”)

- **Technology Validation:** Barrier C. Lack of Hydrogen Refueling Infrastructure Performance and Availability Data (MYPP page 3.6-8: “…the challenge of providing safe systems including low-cost, durable sensors [is an] early market penetration barrier”)

Performance Targets

♦ Sensor Product Specifications (4Q 2010):
 - Range: 0 – 100% H₂
 - Sensitivity: (min) 0.1%H₂ - 4% of reading
 - Environment: Ambient air, 5-95%RH, and 0-55°C range.
 - Interference resistant (e.g: moisture, hydrocarbons, oxygen)

♦ Applications:
 - Safety in distribution/production facilities
 - Leak detection
 - Home/garage safety
 - Vehicular safety
Technical Approach:
Selection of Optical Hydrogen Sensing Platform

<table>
<thead>
<tr>
<th>IOS’s Sensor Formats</th>
<th>Sensitivity Range (Level of detection, LOD)</th>
<th>Response Time@ 4%</th>
<th>Reproducibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point</td>
<td>0.2-10% (0.1%)</td>
<td>2-3 seconds</td>
<td>>90%</td>
</tr>
<tr>
<td>Integrated</td>
<td>0.4-10% (0.1%)</td>
<td>20 seconds</td>
<td>80-85%</td>
</tr>
<tr>
<td>Fully Distributed</td>
<td>1- 4% (0.4%)</td>
<td>8-12 seconds</td>
<td>80-85%</td>
</tr>
</tbody>
</table>
FY 09-10 Technical Tasks/ Milestones

Completion

100% Task 1: Investigate Designs, Materials, and Indicators for Improved Hydrogen Sensors
100% Task 2: Optimize, Fabricate, and Test Improved Hydrogen-Sensing Optrodes
100% Task 3: Optimize, Design, Fabricate, and Test Multi-Channel Integrated Optical Waveguide Sensor Chip
100% Task 4: Design and Integrate Optoelectronic Interface to Waveguide Sensor Chip
100% Task 5: Test and Characterize Packaged Multi-Channel Integrated Waveguide Hydrogen Sensor
100% Task 6: Investigate, Design, Fabricate, and Evaluate Prototype Distributed Hydrogen-Sensing Fiber
100% Task 7: Perform Hydrogen Sensor Market Study under DOE Guidance
100% Task 8: Continue FY07 Investigation of Irreversible Chemistry for Hydrogen Sensing
100% Task 9: Optimize hydrogen sensor element fabrication process; finalize preparation protocol steps
100% Task 10: Complete environmental testing for hydrogen sensor elements.
100% Task 11: Identify potential cross-contaminants; test and optimize hydrogen sensor elements

Milestone 1
Complete cross-contamination testing of sensor elements and determine whether additional selective permeable membranes and/or scrubbing layers are needed.

100% Task 12: Build optoelectronic interface to optrode sensor array modular package
95% Task 13: Design and integrate software data processing including internal calibration curves
90% Task 14: Perform complete test of packaged integrated hydrogen sensor, including sensitivity, response time, selectivity, false alarms, and temperature/humidity characteristics.

Milestone 2
Complete cross-contamination testing of sensor elements and determine whether additional selective permeable membranes and/or scrubbing layers are needed.

87% Task 15: Perform hydrogen sensor market study.
85% Task 16: Management and reporting
Project Plan: FY08 –FY10

♦ Identify critical sensor applications that mitigate hydrogen liability issues
♦ Research and develop reliable hydrogen sensors that fit these applications
♦ Engineer and commercialize cost-effective hydrogen detection systems

Approach

- Define hydrogen indicator chemistry
- Evaluate various optical sensor matrices
- Validate the sensor response/cross-interference
- Develop integrated optic point sensor design
- Refine point sensor format based on market needs
- Develop hydrogen sensor fiber for cable-based system
- Select and finalize sensor format
- Finalize, fabricate, and test optoelectronic system
- Test complete packaged sensor prototype
- System certification and validation testing
- Establish commercial market and partnerships
Hydrogen Sensor Development

♦ **Optimization of hydrogen sensor chemistry:**
 - Improved sensitivity through controlled chemistry immobilization and activation steps
 - Improved reproducibility and higher yield of fabrication

♦ **Optoelectronic design and sensor prototype fabrication:**
 - Design and develop compact optoelectronic board featuring integrated user interface, low power consumption, audio and visual alarm, replaceable sensor chip, and rechargeable battery option
 - Assemble and test complete point sensor product prototype

♦ **Substrate testing:**
 1. Prepared hydrogen sensitive substrates are stored at ambient conditions
 2. Mount optrodes onto designed optoelectronic prototype board
 3. Measure intensity in real-time as a function of hydrogen concentration at various humidity, temperature, and flow-rates
Hydrogen Sensor Testing Station

Illustration of the gas testing setup

hydrogen sensor in 4"X 6" testing prototype
IOS Approach to Hydrogen Sensing
Real-Time Monitoring of H2-Induced Color Change

Illustration of a potential usage in civilians’ car garages as a Hydrogen leak detector.

Schematics of the envisioned Hydrogen Sensor.
Technical Accomplishments: Sensor Prototype Specifications

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Range</td>
<td>100 ppm to 10%</td>
</tr>
</tbody>
</table>
| **Accuracy** | 2% of Concentration (0 to 3% Range)
 | 5% of Concentration (3 to 10% Range) |
| **Response Time** | Less than 5 seconds |
| **Recovery Time** | Less than 5 seconds |
| **Warm up** | 2 seconds |
| **Power** | Battery, USB, or AC adapter |
| **Battery type** | Lithium Ion rechargeable |
| **Battery Life** | 10 hours |
| **Charge Time** | From full discharge -- 1.5 hours
 | Operational immediately |
| **Environmental Correction** | Compensated for temperature and humidity |
| **Temperature Range, Operating** | 10°C to 55°C (compensated) |
| **Temperature Range, Storage** | -30°C to 100°C |
| **Humidity Range, Operating** | 0 - 90%RH, Non-Condensing (compensated) |
| **Product Life** | >5 Years |
| **Calibration Frequency** | Every 3 months |

Sensor Type
- Hydrogen Gas Leak in Air

Application
- Hand held or wall mounts

Technology
- Intrinsically safe optical sensing

Display
- 2-line backlit LCD

User Interface
- Four buttons or serial interface

Alarm Indicators:
- Flashing LED and Buzzer

Auxiliary Indicator
- 3-color LED for charging and battery

Serial Communication
- USB 2.0, RS-232

Enclosure
- Anodized Aluminum

Input Voltage
- 5VDC 10W
• Hydrogen Sensor:
 - Repeatability
Hydrogen Sensor:
-Fabrication Reproducibility

Sensor response of 5 different substrates from two different batches to 0 – 4% H₂ in air at 40-45% RH.
Hydrogen Sensor:
- Humidity/ Temperature Effect

- Humidity dependence is corrected via a reference channel
- Temperature effect was noticed through humidity changes
Hydrogen Sensor: - Humidity/ Temperature Compensation

Clear correlation between sensor and reference channel in various temperature and humidity conditions.

Technical Accomplishments
Hydrogen Sensor:
- Cross interference

Cross-interference testing scheme (NREL Test Protocol)

<table>
<thead>
<tr>
<th>Potential Interferent</th>
<th>Test Conc. (in air)</th>
<th>Test Conc. (in 1% H₂)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Monoxide</td>
<td>50 ppm</td>
<td>50 ppm</td>
</tr>
<tr>
<td>Nitrogen Dioxide</td>
<td>5 ppm</td>
<td>5 ppm</td>
</tr>
<tr>
<td>Hydrogen Sulfide</td>
<td>20 ppm</td>
<td>20 ppm</td>
</tr>
<tr>
<td>Methane</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>Ammonia</td>
<td>50 ppm</td>
<td>50 ppm</td>
</tr>
</tbody>
</table>
Hydrogen Sensor:
- Cross interference

Technical Accomplishments
Collaborations/Acknowledgements

♦ Gerald Voecks – Advisor
 - Fuel cell applications and commercialization
♦ Angelo A. Lamola – Consultant
 - Photochemistry/indicators
♦ William Buttner, Robert Burgess, Matthew Post – NREL Testing Collaborators
 - Hydrogen sensor testing and validation
♦ Intelligent Energy
 - Customer/commercialization partner
♦ DOE Codes and Standards: We thank Antonio Ruiz, DOE for his continued support of this work.
Summary

Relevance:
- Reliable, cost-effective hydrogen sensors are needed for the Delivery, Storage, Manufacturing, Fuel Cell, and Safety Key Activities of the DOE Hydrogen Program. Applications range from garage and passenger compartment safety to leak detection in production facilities and refueling stations.

Approach:
- High performance, low cost optical sensors based on indicator chemistry can meet projected needs
 - Integrated optic sensors and optrodes are ideal for single-point or multiple-point detection
 - Compact optoelectronic prototype is suitable for hand-held and wall mounting applications

Technical Accomplishments:
- Improved indicator chemistry performance (scalable and reproducible fabrication technique)
- Compensated humidity and temperature effects on sensor signal
- Integrated sensor elements into a compact prototype optoelectronic package
- Tested and validated sensor capabilities at National Renewable Energy Laboratory NREL
- Executed market size and cost analysis for sensor commercialization

Collaborations:
- Consultants/Advisor: Gerald Voecks, Angelo Lamola
- Customer/Commercialization Partner: Jadoo Power
- Collaborators: William Buttner, Robert Burgess, and Matthew Post (NREL Testing laboratory)
SUPPLEMENTAL SLIDES
Multiyear Program Plan: Sensor Performance Targets to be achieved by 4Q 2012

♦ **Fuel Cells:** MYPP page 3.4-20 (Table 3.4.9)

| Hydrogen in fuel processor output | Measurement range: 25%–100%
 | Operating temperature: 70°–150°C
 | Response time: 0.1–1 sec for 90% response to step change
 | Gas environment: 1–3 atm total pressure, 10–30 mol% water, 30%–75% total H₂, CO₂, N₂
 | Accuracy: <2% full scale |

| Hydrogen in ambient air | Measurement range: full confidence of the ability to detect half of the lower explosion limit
 | Temperature range: -30°C to 80°C
 | Response time: under 1 sec
 | Gas environment: ambient air, 10–98% relative humidity range
 | Lifetime: 10 years
 | Interference resistant |

♦ **Safety:** MYPP page 3.8-7 (Table 3.8.2)

Table 3.8.2. Targets for Hydrogen Safety Sensor R&D

- Measurement Range: 0.1%-10%
- Operating Temperature: -30 to 80°C
- Response Time: under one second
- Accuracy: 5% of full scale
- Gas environment: ambient air, 10%-98% relative humidity range
- Lifetime: 10 years
- Interference resistant (e.g., hydrocarbons)
Partners – Potential Markets

Hydrogen handling
– Hydrogen production, storage, and testing facilities (Aerovironment, Intelligent Engineering)

♦ Fuel cells
♦ – Stationary fuel cells, Vehicle fuel cells, production and transport (Jadoo Power, Intelligent Energy)

♦ Aerospace
♦ – Launching pad fueling, liquid rocket hydrogen sensor (Boeing)