Hydrogen Storage through Nanostructured Porous Organic Polymers (POPs)

Di-Jia Liu¹, Shengwen Yuan¹, Desiree White¹, Alex Mason¹, Peter Zapol¹, Jiangbin Xia², Zhuo Wang² & Luping Yu²

¹Argonne National Laboratory
²The University of Chicago

DOE Hydrogen Program Annual Merit Review and Peer Evaluation Meeting
Washington, D.C., June 7-11, 2010

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

Timeline
- Project start: July 2007
- Project end: June 2012
- % complete: 60%

Barriers
- Barriers addressed
 A. System Weight and Volume
 B. System cost
 C. Efficiency
 D. Durability/Operability

Budget
- Total project funding: $2 Million
 - DOE share: $1.88 Million
 - Contractor share: $120 K
- Funding received in FY2009
 - $ 800 K
- Funding for FY2010
 - $ 500 K

Partners
- Interactions/collaborations
 - Argonne National Laboratory (Lead)
 - U of Chicago (Subcontractor)
 - HSCoE Members
 - U of N. Carolina ($H NMR)
 - Air Products (Sample exchange)
 - NREL (Measurement calibration)
 - ORNL (Theory)
 - Non HSCoE Members
 - U of Hawaii (Sample exchange)
Objective - Relevance

- To design, synthesize, and evaluate nanostructured porous organic polymers (POPs) as new hydrogen storage adsorbents for transportation applications
- To support polymer materials development with modeling/simulation and advanced structural characterizations

Potential Advantages of POP H\textsubscript{2} Adsorbent & Their Impact on Technology Barriers

- **System Weight and Volume** – POPs are light weight and can be converted to high volumetric density by engineering process such as compression, pelletizing, etc.
- **System Cost** – POPs can be scaled-up for industrial production with the existing infrastructure at competitive cost.
- **Efficiency** – POP-H\textsubscript{2} interaction is based on physi-adsorption/desorption principle with minimum parasitic energy consumption.
- **Durability/Operability** – POPs are stable under the temperature and humidity conditions required for hydrogen storage application.
Approach - Milestones

<table>
<thead>
<tr>
<th>Month/Year</th>
<th>Milestones</th>
<th>Status Update</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/10</td>
<td>Complete the design, synthesis, and characterization of first group transition metal-doped polyporphyrin hydrogen adsorbents</td>
<td>Completed. Investigation on Fe doped polyporphyrin found slightly improved ΔH_{ads} with metal doped system. Finding is published.</td>
</tr>
<tr>
<td>03/10</td>
<td>Complete the design and synthesis of a second group of polymers incorporated with non-C main group elements</td>
<td>Completed. A new series of carborane based POPs were prepared with relatively high surface area and porosity.</td>
</tr>
<tr>
<td>06/10</td>
<td>Complete the evaluation of compression or pelletizing methods for improvement of volumetric capacity for representative polymers</td>
<td>30% Completed. Investigation on maintaining mechanical property of high surface area POP is underway.</td>
</tr>
<tr>
<td>07/10</td>
<td>Complete structural property, hydrogen storage capacity, and heat of adsorption measurement for the second group of polymers incorporated with non-C main group elements</td>
<td>50% completed. Measurement of surface property, H_2 adsorption uptake and isosteric heat of adsorption of carborane based POPs is halfway finished.</td>
</tr>
</tbody>
</table>

We prepared over 100 POPs and demonstrated great feasibility of incorporating different chemical functionalities in narrowly distributed nanoporous space!
Approach - Development Strategy

New Polymer Exploration (UofC/ANL)
- New POP synthesis through rational design at molecular level
- Molecular structure characterization

Characterization & Optimization (ANL)
- H₂ storage capacity measurement
- Surface structure characterization
- Synthesis method improvement

Modeling & Simulation (ANL/HSCoE)
- H₂-polymer interaction study via *ab initio*, DFTB & MD methods
- Advanced characterization through NMR, x-ray, etc.

- Prepare high surface area & narrow/adjustable pore size polymers through rational design and synthesis
- Incorporate “metallic” feature into polymer through conductive backbone or metal doping
- Improve polymer-H₂ interaction by incorporating functional groups with hetero (non-C) elements
- Develop fundamental understanding through modeling and advanced characterization

An example of ANL/UofC polymer with conductive backbone incorporated with different elements
Technical Accomplishment Highlights in FY2010

- Successfully designed and synthesized a polyporphyrin based POP (PTTPP) with high BET surface area and narrow pore size distribution. Gravimetric capacities of 5.0% at 77K and 0.6% at ambient temperature were achieved. Atomically dispersed Fe was successfully integrated into PTTPP with marginally improved hydrogen heat of adsorption. The PTTPP system can be used as a platform to investigate H$_2$-metal interaction in confined space.

- A series of aromatic POPs with similar BET surface areas but variable pore sizes were prepared through facile ethynyl trimerization reaction. H$_2$ isosteric heat of adsorption up to ~10 kJ/mol was achieved. The H$_2$ isotherm study also found that the H$_2$-POP interaction is more sensitive to chemical environment than pore dimension.

- Several new synthetic methods were developed to incorporate a variety of non-C elements (B, N, etc.) into POPs while maintaining high surface areas and narrow pore diameters. Preliminary experiments demonstrated improved heat of adsorption.
Technical Accomplishments - Design & Synthesis of POPs

Creating POPs with contorted cores & variable molecular struts
- High surface area and micropore volume using contorted cores with molecular dimension
- Adjustable pore size via molecular struts of different lengths & crosslinking site densities
- Functionalized surface with different elements & metal exchange sites through monomer design

Examples of preparing POPs via trimerization of ethynyl groups

High surface area and microporosity are generated by a broad range of synthetic chemistries, including ethynyl trimerization; oxidative coupling; Friedel Crafts alkylation; condensation of anhydride, amine, hydroxyl, etc.
Technical Accomplishment 1 - Improving ΔH_{ads} through POP Doped with Transition Metal

- Unsaturated transition metal/hydrogen interaction could form $\text{H}_2\cdot\cdot\cdot\text{TM}$ bond, leading to improved heat of adsorption (ΔH_{ads}) without dissociation (Kubas interaction)
- We successfully prepared polyporphyrin with high surface area and narrow pore size distribution with N_4-macrocyclic ring for metal coordination

Synthetic Scheme for Preparing Polyporphyrin POPs

Technical Accomplishment 1 - Improving ΔH_{ads} through POP Doped with Transition Metal

Significant surface area and micropore volume are created in 3D polyporphyrin... ...metal doping leads to slightly reduction of surface area but little change in pore size.

PTTPP – undoped polyporphyrin
FeTTPP – Fe doped polyporphyrin

<table>
<thead>
<tr>
<th></th>
<th>BET SSA (m²/g)</th>
<th>Langmuir SSA (m²/g)</th>
<th>Total Pore Vol (cm³/g)</th>
<th>Micropore Vol (cm³/g)</th>
<th>Pore Diameter (nm)</th>
<th>Excess H₂ Ads. @ 65 bar & 77 K</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTTPP</td>
<td>1522</td>
<td>2030</td>
<td>0.85</td>
<td>0.67</td>
<td>0.85</td>
<td>5.0%</td>
</tr>
<tr>
<td>P(FeTTPP)</td>
<td>1248</td>
<td>1665</td>
<td>0.68</td>
<td>0.54</td>
<td>0.82</td>
<td>4.6%</td>
</tr>
</tbody>
</table>
Technical Accomplishment 1 - Improving ΔH_{ads} through POP Doped with Transition Metal

- Fe doped polyporphyrin (FeTTPP) shows marginal improvement of ΔH_{ads} over undoped sorbent (PTTPP)
- H_2 uptake capacity exceeds the values predicted by “Chahine rule” by ~40%, suggesting “hidden” micropores in the polyporphyrins

New polyporphyrin based POP can serve platform for exchanging different transition metals for systematic study of H-M interaction!
Technical Accomplishment 1 - Improving ΔH_{ads} through POP Doped with Transition Metal

- Computational modeling efforts within HSCoE suggest enhanced ΔH_{ads} can be achieved through doping of Ti, V, Ca, Mg, Zn, etc.

$\sqrt{7} \times \sqrt{7}$ Metal-Decorated Graphene Model

M. Yoon, et.al., HSCoE - ORNL

H$_2$/HEME Model

Kim & Zhang, HSCoE - NREL/RPI

We are developing new POP synthesis and post-treatment methods for better ΔH_{ads} following the theoretical prediction.
Technical Accomplishment 2 - Optimizing H₂ Sorption through Fine Tuning Nanopore Architecture of POP

- Theoretical modeling suggests that hydrogen sorption is sensitive to pore size at nanometer range
- We developed a synthetic approach of producing POPs with high BET surface >1000 m²/g and tunable pore dimension (0.8 to 0.9 nm) for experimental demonstration

Simple aromatic POPs with similar BET surface areas but variable pore sizes were prepared through facile ethynyl trimerization reaction.
Technical Accomplishment 2 - Optimizing H₂ Sorption through Fine Tuning Nanopore Architecture of POP

Trimerization of aromatic monomer functionalized with different number of ethynyl groups

- POP-1
- POP-2
- POP-3
- POP-4

M1

M2

M3

M4
Technical Accomplishment 2 - Optimizing H₂ Sorption through Fine Tuning Nanopore Architecture of POP

<table>
<thead>
<tr>
<th></th>
<th>BET Surface Area (M²/g)</th>
<th>DFT Pore Diameter (nm)</th>
<th>H₂ uptake @ 77 K (wt%)</th>
<th>H₂ uptake @ 87 K (wt%)</th>
<th>H₂ uptake @ 195 K (wt%)</th>
<th>H₂ uptake @ 298 K (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>POP-1</td>
<td>1031</td>
<td>0.772</td>
<td>2.78</td>
<td>2.31</td>
<td>0.36</td>
<td>0.22</td>
</tr>
<tr>
<td>POP-2</td>
<td>1013</td>
<td>0.736</td>
<td>2.71</td>
<td>2.14</td>
<td>0.45</td>
<td>0.22</td>
</tr>
<tr>
<td>POP-3</td>
<td>1246</td>
<td>0.880</td>
<td>3.07</td>
<td>2.51</td>
<td>0.43</td>
<td>0.20</td>
</tr>
<tr>
<td>POP-4</td>
<td>1033</td>
<td>0.810</td>
<td>2.35</td>
<td>1.75</td>
<td>0.46</td>
<td>0.15</td>
</tr>
</tbody>
</table>
Technical Accomplishment 2 - Optimizing H₂ Sorption through Fine Tuning Nanopore Architecture of POP

Experimental results indicate that ΔH_{ads} is more sensitive to N_p than pore size.

Our observation suggests that the chemical environment in confined space has higher impact on the H₂-POP interaction than pore dimension.
Technical Accomplishment 2 - Optimizing H₂ Sorption through Fine Tuning Nanopore Architecture of POP

Comparison of Experimental & Theoretical ΔH_{ads} (KJ/Mol)

<table>
<thead>
<tr>
<th></th>
<th>M1/POP-1 $N_p = 2.3$</th>
<th>M3/POP-3 $N_p = 3$</th>
<th>M4/POP-4 $N_p = 3.5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental</td>
<td>8.1</td>
<td>9.0</td>
<td>9.7</td>
</tr>
<tr>
<td>Single Layer Model</td>
<td>5.1</td>
<td>5.5</td>
<td>6.0</td>
</tr>
<tr>
<td>Double Layer Model</td>
<td>10.6</td>
<td>12.6</td>
<td>12.9</td>
</tr>
</tbody>
</table>

- MP2/6-311++G(2d,2p)//MP2/6-31+G* level of theory.
- Average Binding Energy: $E=n_2*E_2+n_3*E_3+n_4*E_4$ n_x is a fraction of rings with x coordination

Computational simulation of H₂ adsorbed over M1, M3 and M4

The dependence ΔH_{ads} to monomer composition demonstrates the importance of improving hydrogen-POP binding by altering surface chemical composition!
Technical Accomplishment 3 - Improving H₂/POP interaction via Other Synthetic & Post-treatment Methods

- Explored and successfully incorporated a variety of non-C elements (B, N, S, O...) into POPs to improve H₂ sorption energy while maintaining high surface areas and narrow pore diameters

Example of integrating B into high BET surface POP

- BET SSA = 785 m²/g
- PD = 8.25 Å

Example of integrating N into high BET surface POP

- BET SSA = 870 m²/g
- PD = 0.77 nm
Technical Accomplishment 3 - Improving H₂/POP interaction via Other Synthetic & Post-treatment Methods

- Thermal activation can be effectively used to expose atomically dispersed metal for improved interaction with hydrogen
Collaboration

Partnership within and outside of Hydrogen Sorption Center of Excellence

- Teaming between Argonne National Laboratory (prime) and The University of Chicago (subcontractor)
- Members of DOE HSCoE under the clusters of “Engineered Nanospace” (RC1) and “Substituted Materials” (RC2)
- Collaboration with UNC (HSCoE member) on 1H NMR experiment
- Collaboration with NREL (HSCoE member) on measurement validation
- Information exchange with ORNL (HSCoE member) and RPI on computational modeling and simulation
- Benchmark reference sample exchanges with Air Products (HSCoE members)
- Polyaniline sample exchange and analysis with University of Hawaii

Technology Transfer through HSCoE

- Valuable inputs on our adsorption apparatus test validation
- New ideas and direction, examples include B and metal doped polymers
- Collaboration opportunities in polymer characterization, examples include NMR & neutron studies
- Up-to-date information on new developments in sorption based materials
Future Work

FY10

- Complete the design and synthesis of new B doped POP series and the investigation of surface structure as well as hydrogen storage capacity
- Complete the search for synthesis and activation methods for new transition metal doped POPs
- Complete surface property and hydrogen uptake studies on the metal doped POPs to further improve storage capacity/heat of adsorption
- Complete 1H NMR study on hydrogen-polymer surface interaction within subnanometer space using pore size tunable POPs (collaboration with UNC group)

Go/No-go Decision (Draft): To demonstrate one or more POPs with excess gravimetric capacity $\geq 6\%$ at 77K or $\Delta H_{ads} \geq 12$ kJ/mol

FY11

- Complete further improve surface property, storage capacity and kinetics
- Downselect one or more high capacity POPs for volumetric capacity improvement through compression/pellitizing study
- Prepare final project report
Summary

Relevance: Developing the nanostructured porous organic polymers (POPs) as H₂ storage media to meet DOE performance targets for transportation applications

Approach: Rational design and synthesis at the molecular level supported by computational modeling and advanced characterization

Accomplishments:
- Over 100 POPs were prepared since project inception with high BET surface (up to 1900 m²/g) and narrow pore sizes (7 Å to 10 Å) achieved.
- H₂ uptakes up to 5.0% at 77K and 0.6% at RT were achieved.
- Efforts in metal doping, pore size control and non-C elemental substitution to POPs showed promising passage to further enhance ΔH_{ads} and capacity for ambient temperature storage

Collaboration: Argonne (prime) and U of Chicago (sub) partnering with HSCoE, information dissemination & experimental collaboration

Future Work:
- Continue to incorporate metal and non-C elements to POPs for better hydrogen uptake and heat of adsorption
- Explore non-conventional activation and doping methods for major improvement in storage capacity and temperature
- Identify new pathway for next generation POP-adsorbent with the combination in knowledge of rational design, computational modeling and advanced characterization
Summary Table

H₂ storage capacities for selected POPs developed by Argonne – U of Chicago Team in FY2010

<table>
<thead>
<tr>
<th>Sample</th>
<th>Gr. Uptake (77K, 40 bars) (kg H₂/kg adsorbent+H₂ads)</th>
<th>Vol. Uptake<sup>a</sup> (77K, 40 bars) (kg H₂/L adsorbent)</th>
<th>Gr. Uptake (RT, 70 bars) (kg H₂/kg adsorbent+H₂ads)</th>
<th>Vol. Uptake<sup>a</sup> (RT, 70 bars) (kg H₂/L adsorbent)</th>
<th>ΔH<sub>ads</sub> (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>POP-1</td>
<td>2.8</td>
<td>0.024</td>
<td>0.22</td>
<td>0.0019</td>
<td>8.1</td>
</tr>
<tr>
<td>POP-2</td>
<td>2.7</td>
<td>0.026</td>
<td>0.22</td>
<td>0.0021</td>
<td>7.9</td>
</tr>
<tr>
<td>POP-3</td>
<td>3.1</td>
<td>0.027</td>
<td>0.20</td>
<td>0.0018</td>
<td>9.0</td>
</tr>
<tr>
<td>POP-4</td>
<td>2.4</td>
<td>0.021</td>
<td>0.15</td>
<td>0.0013</td>
<td>9.7</td>
</tr>
<tr>
<td>PTTPP</td>
<td>5.0</td>
<td>0.019</td>
<td>0.45</td>
<td>0.0017</td>
<td>7.5</td>
</tr>
<tr>
<td>P(FeTTPP)</td>
<td>4.6</td>
<td>0.022</td>
<td>0.30</td>
<td>0.0014</td>
<td>8.0</td>
</tr>
</tbody>
</table>

^a Volumetric capacity is calculated based on the packing density of polymer powders after compression under medium pressure.
Additional Slides
Supplemental Information - Some Noteworthy Published Reports in Polymeric Hydrogen Storage Materials

 - The report demonstrates that very high surface area (Langmuir surface area of 7100 m²/g) has been achieved using simple tetraphenyl methane as the contorted core. Corresponding hydrogen adsorption at 48 bar and 77 K was 10.7 wt%.

 - Conjugated microporous polymers prepared by polymerizing with 1,3,5-triethynylbenzene, followed by doping with Li. The hydrogen storage amount reaches up to 6.1 wt% at 1 bar and 77 K.

Both papers are reported by the reputable research institutions in China (one with NIST collaboration) using similar polymer chemistry that we applied. We plan to repeat some of the experiments.
Supplemental Information - Our Laboratory Adsorption Isotherm Calibration using Reference Material (AX21)

Hydrogen uptake isotherms over at AX-21 at 77 K, sample weight: 0.3225 g