Carbon Aerogels for Hydrogen Storage

T. F. Baumann, M. A. Worsley and J. H. Satcher, Jr.
Lawrence Livermore National Laboratory

Hydrogen Sorption Center of Excellence
DOE Hydrogen Program Annual Merit Review
June 9, 2010

This presentation contains no confidential or proprietary information

Project ID: ST077
Project Overview

Timeline
• Project start: FY05
• Project end date: FY10
• Percent complete: 100%

Budget
• Total project funding (proposed): $1050K
• Funding received in FY09: $470 K
• Funding for FY10: $302 K

Technical Barriers Addressed by Project
A. System Weight and Volume
C. Efficiency
P. Lack of Understanding of Hydrogen Physisorption and Chemisorption

Partners
• CalTech (Prof. Ahn)
 • H₂ adsorption measurements
• NIST (C. Brown)
 • MOF processing
• UNC-Chapel Hill (Prof. Wu)
 • Advanced NMR analysis
• HRL Laboratories (J. Vajo, MHCoE)
 • Scaffolds for Metal Hydrides
Project Objectives

• Our objective is the design of novel aerogel materials that meet the DOE system targets (6 wt%, 45 g/L) for on-board vehicle H₂ storage

• Efforts were focused in two areas:
 • Engineering of aerogel-based sorbent materials:
 • Optimize structure for enhanced H₂ uptake and improved kinetics
 • Storage at reasonable operating temperatures
 • Design of aerogel materials as porous scaffolds for light metal hydride systems:
 • Potential to improve kinetic and thermodynamic performance of metal hydrides

<table>
<thead>
<tr>
<th>FY05</th>
<th>FY06</th>
<th>FY07</th>
<th>FY08</th>
<th>FY09</th>
<th>FY10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering undoped CAs</td>
<td>Evaluation of H₂ Sorption</td>
<td>Dopant Incorporation</td>
<td>Spillover/Kinetics Study</td>
<td>CA Scaffold Engineering</td>
<td>Mechanistic Studies</td>
</tr>
<tr>
<td>Evaluation of H₂ Sorption</td>
<td>Screening of CA Scaffolds</td>
<td>CA Scaffold Engineering</td>
<td></td>
<td></td>
<td>Reversibility/Lifetime Studies for Sorbent and Scaffolds</td>
</tr>
</tbody>
</table>
Project Approach-Part 1

• Our approach is to utilize the flexibility of aerogel synthesis for the design new sorbent materials

• Aerogel synthesis allows for control over bulk properties (surface area, pore size, pore volume, composition, density) and for the homogeneous incorporation of modifiers (metal catalysts, organometallic species) into the matrix

• With this approach, we can control:
 • Surface chemistry and microstructure of the sorbent
 • Dispersion of the modifier (i.e. Pt nanoparticles for spillover)

• We can also use this flexibility to explore other sorbent materials with unique compositions

• Process is scaleable for production of monoliths or powders
Project Approach-Part 2

• Improved reaction kinetics for reversible H₂ storage in complex metal hydrides can be achieved through use of nanoporous scaffolds
 • Limits particles sizes and reduces diffusion distances
• We are fabricating aerogels as scaffolds for light metal hydrides (LMH), such as MgH₂, LiBH₄ and NaAlH₄
 • Work with HRL Laboratories (Metal Hydride CoE)
• Structural requirements for practical application of MH scaffolds:
 • Large pore volumes (minimize capacity penalty)
 • Small pore sizes (limit particle sizes)
 • Good thermal conductivity
 • Compatible surface chemistry
• We are using the flexibility of aerogel synthesis to design novel nanocomposites that possess the requisite structural, chemical and transport properties for metal hydride scaffolding
Previous Accomplishments:
Activated CA Sorbents

- Microporous CAs with surface areas in excess of 3000 m²/g were prepared that exhibited surface excess H₂ adsorption of up to 5.3 wt% and 29.2 g H₂/L at 77K.

- These high surface area materials were used as supports for the design of new spillover materials with the goal of increasing overall H₂ capacity and improving uptake kinetics at room temperature.

- Hydrogen dissociation catalysts (Ni, Pt) were incorporated into the aerogel supports by different methods to investigate the effects of catalyst dispersion and catalyst/support interface on H₂ uptake and kinetics.

- Spillover systems derived from CAs exhibited significant issues with reproducibility for H₂ uptake at RT.

HR-TEM of Pt-doped ACA (2400 m²/g) prepared by atomic layer deposition.
Technical Accomplishments: Controlling Pore Size in Activated CAs

- New activated CAs have been prepared that exhibit higher bulk densities and increased micropore content:
 - Focus on increasing volumetric capacities in our ACAs
 - Improved textural properties achieved through modified thermal activation process
 - Smaller average pore sizes observed for KOH-activated CAs

- Bulk densities of the high surface area ACAs is also improved

- Hybrid CO$_2$-KOH activation process may provide access to ACA with desired pore structure

- Current target is an ACA with surface area ~2700 m2/g (> 5 wt% H$_2$) that exhibits high bulk density (> 0.5 g/cc) and narrow micropore size distribution (< 10 Å)

1Similar approaches have recently been reported: Meisner et al, Nanotech. 2009, 20, 204023; Wen et al, Electrochem. Comm. 2009, 11, 715.
Technical Accomplishments: New Spillover Receptors

- We have prepared new carbon aerogel materials derived from sugars that may have potential as spillover receptors:
 - Materials derived from carbonization of sucrose or glucose aerogels\(^1\)
 - Carbonized sugar aerogels (cSA) are comprised entirely of “bridge” material used to enhance hydrogen uptake in other spillover systems\(^2\)

- This material should exhibit very different surface characteristics than those of traditional activated carbons, especially with regard to oxygen-containing species
- Potential to improved kinetics of spillover process
- Current focus for cSAs:
 - Increasing surface area either through aerogel synthesis or thermal activation process
 - Incorporation of hydrogen dissociation catalysts (i.e. Ru)

2 Yang et al., *JACS*, 2006, 128, 8136.
Previous Accomplishments: CA Scaffolds

- New CAs were prepared and tested as scaffolds with LiBH₄:
 - The 2nd generation materials combined the large pore volumes of the 1st generation CAs with the small pore size of HRL xerogels

1st Generation
HRL Carbon Xerogel
APD ~ 13 nm
PV = 1.1 cm³/g

LLNL CA
APD ~ 40 nm
PV = 2.7 cm³/g

2nd Gen Scaffolds
APD ~ 15 nm
PV = 2.6 cm³/g

APD ~ 9.5 nm
PV = 1.1 cm³/g

APD ~ 4 nm
PV = 0.5 cm³/g

- LiBH₄ composites prepared with these scaffolds exhibited decreases in dehydrogenation temperatures relative to bulk LiBH₄

- We also synthesized new carbon nanotube (CNT)-CA composites as next-generation scaffold materials:
 - Improved thermal transport in these scaffolds
 - CNTs appeared to influence hydrogen desorption process for LiBH₄
Technical Accomplishments: Carbon Nanotube-CA Composites

• We have developed a new method for growing CNTs directly in the pores of the CA scaffold:
 • CVD growth of multi-walled CNTs within metal-loaded CAs (M=Ni, Fe)
 • CNTs fill the open pore volume of the scaffold
 • Approach provides larger interfacial area between CNTs and metal hydride

SEM and TEM images of MWCNTs grown in the pores of an ACA (2400 m²/g)

Technical Accomplishments: Carbon Nanotube-CA Composites

- LiBH₄ composites prepared with these CA-CNT scaffolds exhibited lower dehydrogenation temperatures than either the bulk hydride or composites made with the smaller pore CA scaffolds

TGA data for LiBH₄ incorporated into different CA scaffolds

- Dehydrogenation temperature is lower than expected based on the large average pore size of the CA-CNT scaffold (>100 nm)

- Interaction of BH₄ with CNT surface may influence rate of H₂ exchange, similar to the effect reported for LiAlH₄/CNT systems

- Metal catalyst nanoparticles (Ni) may also play role in dehydrogenation process

Technical Accomplishments: Surface Modification of Scaffolds

- We have also developed methods\(^1\) for preparing monolithic scaffolds with surface coatings that are inert and can improve the wetting characteristics of the scaffold for magnesium metal:
 - Metal carbide surfaces (i.e TiC) have been shown to exhibit better wetting compatibility with Mg than pure carbon surfaces\(^2\)
 - CA scaffolds coated with a uniform layer of TiC have been prepared

- These materials are prepared by a simple two-step process:
 - The scaffold is first coated with a thin layer of TiO\(_2\) using either vapor- or solution-phase techniques
 - The TiO\(_2\)-CA is then treated at 1400°C under Ar, leading to carbothermal reduction of the TiO\(_2\)
 - This approach allows for coating of the surfaces of the scaffold without compromising pore volume

Collaborations

• Partners:
 • CalTech (Academic): H₂ uptake measurements in spillover materials as well as new sorbent systems
 • HRL Laboratories (Industry): Evaluation of aerogels as scaffolds for metal hydrides
 • NREL (Federal): (1) Performance evaluation of new spillover materials and (2) testing of functionalized aerogels as supports for organometallic species
 • NIST (Federal): (1) Supercritical processing of MOF sorbents and (2) evaluation of scaffolding effects on performance of metal hydride materials by Neutron Scattering experiments
 • UNC-Chapel Hill (Academic): Advanced NMR analysis of H₂ sorption in high surface area sorbents
Future Work

• Complete work on modified synthesis/activation process to increase volumetric capacities of ACA:
 • Hybrid activation to control evolution of micropores
 • Improved architecture to increase bulk density
• Evaluate performance of new sugar-based spillover receptor:
 • Test spillover behavior (uptake, kinetics, reversibility) in metal-doped cSAs
• Optimize CNT-CA scaffolds for metal hydrides:
 • Continued engineering of scaffold structure (porosity, CNT-loading)
 • Modify surface chemistry of the scaffolds to improve MH wetting behavior
 • Incorporation of catalysts/destabilizing agents into CA-CNT composites
Project Summary

Relevance: Design of new aerogel materials for hydrogen storage

Approach: Incorporation of modifiers into high surface area aerogels to maximize H₂ uptake and increase binding energies

Technical Accomplishments:

• Improved pore size distribution in activated CAs
• Fabricated new spillover receptors derived from sugars
• Prepared novel CA-CNT nanocomposites as scaffolds for metal hydride systems

Center Collaborations:

• Prof. Channing Ahn (CalTech): H₂ sorption measurements
• John Vajo (HRL, MHCoE): CA scaffolds for metal hydrides
• Craig Brown (NIST): (1) Supercritical processing of MOFs and (2) Characterization of CA structure by NS techniques
• Prof. Yue Wu (UNC): Characterization of CA structure and H₂ uptake by advanced NMR techniques
Summary for CA Materials

DOE On-Board Hydrogen Storage System Targets

<table>
<thead>
<tr>
<th>Storage Parameter</th>
<th>Units</th>
<th>2010 System Target</th>
<th>CA Material Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific Energy</td>
<td>kWh/kg (wt% H₂)</td>
<td>2.0 (6 wt% H₂)</td>
<td>5.3 wt% at 77 K and 30 bar</td>
</tr>
<tr>
<td>Energy Density</td>
<td>kWh/L (g H₂/L)</td>
<td>1.5 (45 g H₂/L)</td>
<td>~29 g H₂/L</td>
</tr>
</tbody>
</table>