SRNL Technical Work Scope for the Hydrogen Storage Engineering Center of Excellence

Design and Testing of Metal Hydride and Adsorbent Systems

Theodore Motyka
Assistant Director and SRNL Project Lead

Richard Chahine
Director Hydrogen Research Institute
UQTR

Bruce Hardy
SRNL Transport Phenomena Tech Area Lead

Stephen Garrison
SRNL Tech Team Lead

David Tamburello
SRNL Tech Team Lead

Claudio Corgnale
SRNL Transport Phenomena

Savannah River National Laboratory
June 9, 2010

This presentation does not contain any proprietary, confidential or otherwise restricted information
Overview

Timeline

• Start: February 1, 2009
• End: July 31, 2014
• 20% Complete (as of 3/31/10)

Barriers

• System Weight and Volume
• H$_2$ Flow Rate
• Energy Efficiency

Budget

• FY 09 Funding: $888,945*
• FY10 Funding: $1,640,000*

* Includes $241,200/$360,000 for the University of Quebec Trois Rivieres (UQTR) as a subrecipient for FY09/FY10

Partners

[List of partner logos and names]
Relevance: Overall Project Objectives

Phase 1: 2009-2011

- Compile all relevant metal hydride materials data for candidate storage media and define future data requirements.
- Develop engineering and design models to further the understanding of on-board storage transport phenomena requirements.
- Apply systems architecture to “up select” specific metal hydride systems capable of meeting DOE storage targets.

Phase 2: 2011-2013

- Develop innovative on-board system concepts for metal hydride and adsorption hydride materials-based storage technologies.
- Design components and experimental test fixtures to evaluate the innovative storage devices and subsystem design concepts, validate model predictions, and improve both component design and predictive capability.

Phase 3: 2012-2014

- Design, fabricate, test, and decommission the subscale prototype systems of each materials-based technology (adsorbents and metal hydrides storage materials).
Relevance: Phase 1 Objectives

Collect Media Property Data for Metal Hydrides and Adsorbents
- Kinetics data and models
- Thermal and mass transport data
- Evaluate completeness of available data
- Propose experiments to obtain missing data
- Interface with MHCoE and independent projects

Collect Operational Data for Storage Systems
- Heat transfer
- Mass transfer
- Identify additional data required

Develop General Format for Models
- Extension of “Hierarchical Modeling System”
- Apply preliminary system model boundary conditions

Assemble and Test Models
- Conduct preliminary validation

Develop “Acceptability Envelope” of Media Characteristics Based on 2010 & 2015 DOE Technical Targets
- Determine which existing metal hydrides have characteristics lying within the “acceptability envelope”

Apply System and Engineering Models to Evaluate Metal Hydride Systems Against 2010 DOE Technical Targets
- As the Metal Hydride System Architect determine which existing metal hydride systems have the potential to meet the Phase I Go/No-Go decision
Approach: SRNL’s Major HSECoE Technical Activities

Hydrogen Storage Engineering Center of Excellence

- **D. Anton, SRNL**
- **T. Motyka, SRNL**

Materials Operating Requirements
- D. Herling, PNNL
- **Materials Centers of Excellence Collaboration – SRNL, LANL, NREL**
- Reactivity – UTRC
- Adsorption Properties – UQTR
- Metal Hydride Properties – SRNL
- Chemical Hydride Properties - LANL

Transport Phenomena
- B. Hardy, SRNL
- **Bulk Materials Handling – PNNL**
- Media Structuring & Enhancement – GM
- **Mass Transport – SRNL**
- **Thermal Transport - SRNL**

Enabling Technologies
- J. Reiter, JPL
- **Thermal Insulation – JPL**
- **Hydrogen Purity – UTRC**
- Sensors – LANL
- Materials Compatibility – PNNL
- Pressure Vessels - PNNL

Performance Analysis
- M. Thornton
- **Vehicle Requirements– NREL**
- Tank-to-Wheels Analysis – NREL
- Forecourt Requirements - UTRC
- Manufacturing & Cost Analysis - PNNL

Integrated Power Plant/Storage System Modeling
- D. Mosher, UTRC
- **Off-Board Reversible - UTRC**
- On-Board Reversible – GM
- **Power Plant – Ford**

Subscale Prototype Construction, Testing & Evaluation
- T. Semelsberger, LANL
- **Risk Assessment & Mitigation – UTRC**
- Design Optimization & Subscale Systems – LANL, SRNL, UQTR
- Fabricate Subscale Systems Components – SRNL, LANL
- Assemble & Evaluate subscale Systems – LANL, JPL, UQTR

Bold = SRNL Projects

Added System Architect role for metal hydrides
SRNL activities realigned due to project priorities & budget constraints
Approach: Phase 1 Milestones, Deliverables and Go/No-Go Criteria

Milestones
- Compile Metal and Adsorption Hydride Data
 - Chemical kinetics
 - Equilibrium hydrogen capacity
 - Model development
 - Heat transfer parameters
 - Mass transfer parameters
- Develop Preliminary Hierarchical Model
 - Use model to define “acceptability envelope” of metal and adsorption hydride properties to meet DOE2010 and 2015 goals
- Develop Material Test Plan and Matrix

Deliverables (Programmatic Go/No-Go Criteria)
- Preliminary Envelope of Properties for Acceptable Media
- Report Describing Phase 1 Activities and Results in Detail

Technical Go/No-Go Criteria
- “Up Select” Media Falling Within Acceptability Envelope
Accomplishments: Material Operating Requirements

• Selected sodium aluminum hydride (NaAlH₄) material as initial baseline hydride candidate material for transport phenomena and system modeling development

• Databases completed for:
 - NaAlH₄ (with and without catalysts)
 - 2:1 LiNH₂:MgH₂
 - MgH₂ (without catalysts)
 - TiCrMn
 - Mg₂Ni

• Determination of properties not listed in literature is underway
 - i.e. Equilibrium pressure and packing density of 1:1 LiNH₂:MgH₂
Accomplishments: Metal Hydride Models

• **Model Development and Validation**
 - 0-D kinetics model – MathCAD®
 - Baseline numerical model – Comsol®
 - Model validation against data

• **Optimization Studies**
 - Unit cell models – Comsol®
 - Results
 - Materials Requirements

• **Novel Concepts**
 - Assessment
Accomplishments: Metal Hydride Models: 0-D MathCAD® Kinetics Model

Example: NaAlH₄ + 4%TiCl₃
UTRC kinetics and saturation parameters
Assumptions:
- Isothermal
- Isobaric
- Kinetic limitations only

Results
- Feed at 100 bar H₂ yields a significantly larger optimum temperature range
- Na₃AlH₆ saturation term reduces rate of formation of NaAlH₄
- Saturation weight fraction (C₁, sat) controls optimal temperature

Optimum Temperature Range
Accomplishments: Metal Hydride Models: Fill Time - Metal Hydride (NaAlH₄)

Mass H₂ Stored
- 5.5 kg in 4.2 min (2010 Target)
- Includes compressed gas in voids (~50% porosity)

Total Tank Volume: 0.32 m³
- 4 Tanks
 - Length: 4 ft (1.2 m)
 - Diameter: 1 ft (0.3 m)

Discharge Conditions:
- Pressure: 4 bar
- Temperature: 170 °C

Model shows conditions required to achieve specific fill times for two (NaAlH₄) materials with different kinetic properties

UTRC Prototype 1 Kinetics

UTRC Prototype 2 Kinetics
Accomplishments: Metal Hydride Models: Geometric Representation

This is a specific example of a generalized FEM model that can be applied to any geometry and set of thermal properties.

Sample Cross-Section Schematic

Sample Geometry Used in 3-D Model

Sample Geometric Parameters
- Diameter 23.0 cm
- Length 68.90 cm
- Fin Thickness 0.0313 cm
- Axial Spacing of Fins 0.64 cm
Accomplishments: Metal Hydride Models: NaAlH₄ Kinetics Vs Storage Vessel Charge Rate

Coolant and Feed Hydrogen Temperatures Fixed at 100°C
Charging Pressure of 50 bar
Initially 13,333.33 mol/m³ of NaH 0 mol/m³ of NaAlH₄ and Na₃AlH₆

Results show that for good heat transfer conditions with NaAlH₄, the charge rate is limited by kinetics.
Accomplishments: Metal Hydride Models: Novel Concepts

Longitudinal Fins
Symmetry assumed
- Each tube independent
- End effects neglected (Assumed 2-D)
- 60 wedge
Spatially uniform H₂ pressure assumed
Explicit fin and tubes
Media-metal thermal contact resistances included
Conditions (Adjustable)
- 50 bar H₂ feed pressure
- 100 °C cooling fluid

Advantages
- Media Packing

Disadvantages
- Construction Cost

also applies to MHS (below)

Metallic Honeycomb Structure (MHS)

<table>
<thead>
<tr>
<th>Thickness t (in)</th>
<th>0.04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell size l (in)</td>
<td>1/2</td>
</tr>
</tbody>
</table>

- Symmetry assumed (30°)
- Axial hydrogen injection at 50 bar
- Contact resistance not considered
Accomplishments: Adsorbent Models: Scoping Model

- Unit cell
 - Half-thickness of fin & media
 - Central coolant channel
- Energy balance only
 - Prescribed pressure transient
- Optimizes Parameters (uses Mathlab® - Comsol® Interface)
 - Cooling tube (inner) diameter
 - Cooling tube thickness
 - Tube (horizontal) spacing
 - Fin thickness
 - Fin-Fin (vertical) spacing

Advantages:
- Executes quickly
- Analogous to SRNL heterogeneous cell metal hydride scoping models
- Suitable for large number of runs
Accomplishments: Adsorbent Models - Detailed MaxSorb® (AX-21®)

• Solves conservation equations for mass, momentum and energy in 2 or 3 dimensions
 - Uses weakly compressible Brinkman equations in all of flow domains
 - Includes thermal radiation
 - Temperature dependent fit for carbon specific heat
 - Correlations for non-ideal hydrogen properties from NIST REFPROP 23 V8.0 database
 - Valid for $0.05 \leq P \leq 35.0\text{MPa}$ and $70 \leq T \leq 450\text{K}$
 - Compressibility factor
 - Enthalpy
 - Viscosity
 - Thermal conductivity

• AX-21® thermodynamic models for absolute adsorption and internal energy of adsorbed hydrogen obtained from:
Accomplishments: Adsorbent Models: Distribution of Stored H₂

Calculates hydrogen loading for actual UQTR Adsorbent System

P₀ = 0.182 MPa
P = 0.372 MPa
P = 2.228 MPa
P = 4.938 MPa

Total hydrogen concentration (mol/m³) during loading
Accomplishments: Adsorbent Models: Temperature Profiles

Comparing temperature results from the model with those measured in the actual adsorbent system evaluated at UQTR.

Average Bed Temperatures (not including structures or thermocouples)

Effect of Bed Thermal Conductivity
The “Acceptability Envelope” or “BlackBox Analysis” determines range of characteristics necessary for coupled media and system to meet storage system performance targets.

- Based on energy balance
- Serves as media screening tool
 - Guide for material development
- Uses technical targets to establish values for parameter “grouping”
 - Defines ranges of parameters for media & storage vessel

Current analysis applies to metal hydrides

- Rectangular coordinates (RC)
- Cylindrical coordinates (CC)
Accomplishments: Acceptability Envelope: Equation

For both rectangular and cylindrical geometries

\[\Delta T = -\frac{1}{m} \left[\frac{L^2}{k} \Delta H_{\text{overall}} - \frac{\rho_{\text{Hydride}}}{M_{\text{Hyd_eff}}} \frac{\Delta m_{\text{H}_2}}{\Delta t} \right] \]

\[\Delta T = T_{\text{max}} - T_{\text{min}} \]

\[L^2 = r_1^2 - r_2^2 \] \text{cylindrical}

\[L = (\text{plate spacing}) \] \text{rectangular}

Rearrange to get

\[\left(\frac{1}{L^2} \right) \left(\frac{k \ M_{\text{Hyd_eff}} \ \Delta T}{- \Delta H_{\text{overall}} \ \rho_{\text{Hydride}}} \right) = \frac{1}{mM_{\text{H}_2}} \frac{\Delta m_{\text{H}_2}}{\Delta t} \]

\[L \quad \text{Vessel parameter} \]

\[\Delta T \quad \text{Media parameters} \]

Charging/discharging rate

Linear relation between charging/discharging rate and media and system parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>Distance between heat transfer surfaces</td>
</tr>
<tr>
<td>(\Delta T)</td>
<td>Temperature range for acceptable chemical kinetics (to give charge/discharge rate of (\Delta m_{\text{H}_2}/\Delta t))</td>
</tr>
<tr>
<td>(M_{\text{Hyd_eff}})</td>
<td>Mass of hydride (in reference form) required to load target amount of hydrogen in specified time (relates to kinetics)</td>
</tr>
<tr>
<td>(\Delta H_{\text{overall}})</td>
<td>Overall heat of reaction</td>
</tr>
<tr>
<td>(\rho_{\text{Hydride}})</td>
<td>Hydride density (in reference form)</td>
</tr>
<tr>
<td>k</td>
<td>Bed thermal conductivity</td>
</tr>
<tr>
<td>(\Delta m_{\text{H}_2}/\Delta t)</td>
<td>Required rate of charging/discharging (from DOE Technical Targets)</td>
</tr>
</tbody>
</table>
Accomplishments: Acceptability Envelope:
Varying Thermal Conductivity & Heat Transfer Surface Spacing

\[\Delta L \text{ is distance between surfaces} \]

NaAlH₄ System:
Maximum HX Surface Spacing (in m)
(RC, wall fixed \(T, \rho = 720 \text{ kg/m}^3, k = 0.5 \text{ W/mK}, \Delta H = 40.3 \text{ kJ/molH₂} \))

- at low thermal conductivities a high rate of heat removal is required which leads to very close HX surface spacing
- at more reasonable HX spacing higher thermal conductivities are needed

Alternatives: reduce \(\Delta H_{\text{overall}} \) or increase \(\Delta T_{\text{max}} \)

DOE 2010 🟢 5 kg in 4.2 min
DOE 2015 🟢 5 kg in 3.3 min

\(\Delta T_{\text{max}} = 5^\circ \text{C} \)

\(k = \text{thermal conductivity} \)

NaAlH₄ System:
Maximum Req’d Bed Thermal Conductivity (in W/m K)
(RC, wall fixed \(T, \rho = 720 \text{ kg/m}^3, \Delta L = 0.0127 \text{ m}, \Delta H = 40.3 \text{ kJ/molH₂} \))
Accomplishments: System Architect Analysis:
Sodium Aluminum Hydride¥

1. Gravimetric Density
2. Cycle Life
3. Safety*
4. Toxicity*

¥ based on system analysis performed by GM and UTRC
* Safety and Toxicity values are currently rough estimates more quantitative values are being developed

- 17 Targets fully met
- 4 Targets below 40% minimum
Accomplishments: System Architect Analysis:
Applying Acceptability Envelope Model to Various Materials

Minimum required H₂ wt% stored on the material to meet 40% of the DOE 2010 gravimetric density target (assuming a 50:50 material to system gravimetric ratio)

Suggests that Li-Mg-N materials may be the most promising metal hydrides for further consideration

Minimum recommended value for heat transfer surface spacing based on NaAlH₄ system analyses

Pure material:
ΔT=15°C
k=0.7 W/m K
Fill time = 10.5 min

Graphite enhanced material:
ΔT=15°C
k=8.5 W/m K
Fill time = 10.5 min
Collaborations

Material Operating Requirements
- Ewa Ronnebro, PNNL
- Jason Graetz, BNL (Alane data)
- Weifang Luo, Sandia (2 LiNH2: 1 MgH2 data)

Metal Hydride System Modeling
- Mikhail Gorbounov, Daniel Mosher, Bart van Hassel, UTRC
- Jacques Goyette, Maha Bhouri, UQTR
- Sudarshan Kumar, GM
- Kevin Drost, Goran Jovanivich, Anna Garrison, OSU

Adsorbent System Modeling
- Richard Chahine, M. A. Richard, UQTR
- Andrea Sudik, Ford

Acceptability Envelope Development and Applications
- Ewa Ronnebro, PNNL (Material Screening)

System Architect Analyses
- Sudarshan Kumar, GM
- Bart van Hassel, UTRC
- Michael Veenstra, Ford (Assistant MH System Architect)
Proposed Future Work

Metal Hydride Material Operation Requirements
• Complete databases for 1:1 LiNH2:MgH2 material with and without catalysts
• Determine needed engineering properties for all up selected materials

Metal Hydride System Modeling
• Perform more detailed modeling and scoping studies (includes H2 mass transfer, H2 in gas phase, coolant tube HX coefficients etc.)
• Examine longitudinal fins and additional, non-connecting fins
• Explore metal honeycomb structure including cell size and additional cooling
• Perform parameter sensitivity studies

Adsorbent System Modeling
• Conduct validation experiments that reduce parasitic heat transfer
• Compare performance of MOF-5® and MaxSorb®
• Use baseline models in 2 and 3 dimensions for design and sensitivity studies
• Conduct process-specific experiments (validate models and test conceptual vessel designs)
• Reduce models to form suitable for use in system analysis
• Apply models to prototype design

Acceptability Envelope Applications and Development
• Include effects of system parameters
• Complete application to metal hydrides (include coupled parameter ranges and candidate material evaluations)
• Develop and apply model for adsorbents

System Architect Analyses
• Extend System Architect analysis from Sodium Alanate to other metal hydride systems
• Complete System Architect analysis on metal hydride candidate systems for Phase I Go/No-Go Decision
Project Summary

Relevance
As both the overall lead and a major technical contributor to the HSECoE project, SRNL is using its extensive expertise in metal hydride technology, hydrogen materials compatibility, transport phenomena modeling & analysis, and hydrogen storage system & component design & fabrication to evaluate a solid-state hydrogen storage system for vehicle application that meets or exceeds DOE’s 2010 and 2015 goals. SRNL, through a subcontract grant, is also utilizing the expertise of the UQTR, which has been internationally recognized for its work in hydrogen adsorbent material and system development and testing.

Approach
In Phase I and II SRNL will:
- lead in the collection and screening of material property and engineering data for metal hydride and adsorbent materials.
- lead the overall project in Transport Phenomena modeling and analysis concentrating on metal hydride and adsorbent systems and components designs.
- lead System Architect activities for metal hydride systems.

Technical Accomplishments and Progress (as of 3/10)
- Collected material operating data for 5 metal hydride candidates and AX-21® adsorbent material (UQTR)
- Issued a technical report that evaluated the feasibility of membrane separation for metal hydride systems purification
- Developed acceptability envelope for metal hydrides
- Performed comparisons between metal hydride models & available data
- Developed baseline models for metal hydrides
- Performed optimization studies and modeling of various vessel configurations
- Completed System Architect analysis of Sodium Alanate vs. DOE 2010 technical hydrogen storage targets

Collaborations
HSECoE partners, Materials Centers, SSAWG, IPHE, IEA etc.

Proposed Future Work (Phase I/II)
- Complete metal hydride and adsorption data collection
- Use detailed models to compare storage system behavior for different media (metal hydrides, MOF-5® and AX-21®)
- Develop and apply Acceptability Envelope to adsorbent systems
- Continue sensitivity analyses
- Pursue novel concepts (micro & mini-channel heat exchangers and structured media)
- Conduct preliminary system designs
- Complete System Architect analysis on final candidate metal hydride system for Phase I GO-NO-GO Decision