21st Century Renewable Fuels, Energy, and Materials Initiative

Susanta K. Das and K. Joel Berry

Center for Fuel Cell Systems and Powertrain Integrations
Kettering University, Flint, Michigan, USA.

DOE Annual Review: May 9-13, 2011

Project ID # FC078

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

Timeline
- Start – July 2010
- Finish - June 2011
- 35% Complete

Budget
- Total project funding
 - DOE - $1,250,000
 - Cost share - $312,500
- Funding received in FY10
 - $1,250,000

Overview

Barriers
- Barriers
 - A. Materials and manufacturing costs
 - B. Membrane performance and durability
 - C. Efficient multi-fuel reforming system
 - D. Alternative fuel source without impact on human food chain.

- Targets
 - Improved membrane conductivity & durability
 - Cost-effective multi-fuel reformer system
 - High power density lithium-air battery with simple control systems and reduced cost.
 - High energy yield agriculture bio-crop

Partners
- Michigan Molecular Institute (MMI) – Polymer membranes and lithium-air battery
- Saginaw Valley State University – High energy yield agriculture bio-crop (Miscanthus)
Relevance

Overall Objectives (2010 – 2011)

- Development of an improved high-temperature fuel cell membrane capable of low-temperature starts (<100°C) with enhanced performance.
- Development of a 5kWe novel catalytic flat plate steam reforming process for extracting hydrogen from multi-fuels and integrate with high-temperature fuel cell systems.
- Development of an improved oxygen permeable membrane for high power density lithium-air batteries with simple control systems and reduced cost.
- Development of novel high energy yield agriculture bio-crop (Miscanthus) for alternative fuels with minimum impact on human food chain.
- Extend math and science alternative energy educator program to include bio-energy and power.
Plan and Approach

Plan & Approach

➢ Task 1: High temperature fuel cell membrane
 - Increased proton conductivity than peer
 - Improved durability and thermal stability
 - Performance evaluation

➢ Task 2: 5kWe catalytic flat plate fuel reformer
 - CFD study of catalytic flat plate reformer
 - Design and build the reformer prototype
 - Test and evaluate the performance

➢ Task 3: High power density Lithium-Air battery at a reduced cost.
 - Optimize the combination of electrolyte that is best suitable for Li-air battery
 - Design and build the prototype
 - Test of prototype for durability and efficiency

➢ Task 4: Research on high energy yield agriculture bio-crop (Miscanthus)
 - Literature survey
 - Develop energy- and economic model
 - Identify methods to produce alternative fuels from bio-crop (Miscanthus)

➢ Task 5: Alternative energy education program to include bio-energy and power.
 - An educational module preparation incorporating the project results for Bio-Power education

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Approach Overview for High Temperature PEM Membrane

- We used novel patented polymer synthesis technology to prepare robust electrolyte for high temperature PEM fuel cell

Patented Polymer Synthesis Technology

New Polymer Membrane

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Approach Overview for CFD flat plate reformer Modeling

- **Catalyst layer**
 - Thickness: 20×10^{-6} m
 - Pore radius: 10×10^{-9} m
 - Porosity: 0.4
 - Tortuosity: 4
 - Thermal conductivity: 0.4 W/m.K
 - Density: 2355 kg/m3

- **Solid wall**
 - Thickness: 0.0005 m
 - Thermal conductivity: 25 W/m.K

- **Water Gas Shift**
- **Reaction channel**

- **Length of the channel**: 30 cm
- **Width of the channel**: 2 mm
- **Wall (flat plate) thickness**: 50 μm

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
Approach Overview for Lithium-Air Battery

- Schematic Representation of The Proposed Lithium-Air Battery
Approach Overview for Biofuel from High Yield Energy Crop

- **Approach for biofuel from high energy yield agriculture crop**

 - Miscanthus Grass
 - Torrefied bio-mass
 - Pyrolyzed bio-char
 - Ethanol - Biofuel
Accomplishments/Progress

• Optimization of high temperature membrane casting protocol

- Three control \(m \)-PBI-PPA membranes have been cast to date
- A nitrogen flow system was found to be preferable to a closed nitrogen system
 - Necessary to drive off water to shift the equilibrium toward the desired PBI product
- Storage of PPA under rigorously anhydrous conditions was also found to be key
- The quality of the film was related to the reaction time (mass of PBI)
 - Necessary to determine optimum reaction time
Accomplishments/Progress/Results

• CFD analysis of Catalytic Flat Plate Reformer

 • Schematic of Catalytic Flat Plate fuel reformer

 • Transverse temperature difference in both reformer and combustion side

• In a conventional steam reformer T_g is often greater than 250°C whereas here it is less than 30°C.

• Virtually no heat loss at the very end section of the reformer.
Accomplishments/Progress/Results

• CFD analysis of dry hydrogen and dry CO production with WGS

(a) Production of dry H₂ with water gas shift (WGS) reaction and optimized reformer geometry.

(b) Production of dry CO with water gas shift (WGS) reaction and optimized reformer geometry.

- Production of dry hydrogen is increased only 2% with WGS reaction.
- Reduction of dry CO is more than 50% with WGS reaction. CO level has changed from 0.158 to 0.072 on dry basis.

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
Accomplishments/Progress/Results

- **Comparison of conductivity among ceramic and polymer electrolyte for Lithium-Air Battery**

- **Ceramic electrolyte: Li₂O, Al₂O₃, GeO₂, and P₂O₅**
 - LAGP disc before sintering
 - LAGP disc after sintering

- **Polymer electrolyte: PEO, LiTFSI, BN/Li₂O**
 - PC (BN) disc
 - PC(Li₂O) disc

(a) Ceramic and polymer electrolyte sample preparation.

(b) Conductivity as a function of temperature for ceramic and polymer electrolyte.

- **The ceramic electrolyte has moderate conductivity at reduced temperature.**
- **The polymer electrolyte shows higher conductivity above 35°C.**
- **The big difference in the conductivity among the polymer samples might be attributed to the poor quality of the Pt coating on the surface of the discs.**
Accomplishments/Progress/Results

• Activation Energy in Lithium-Air Electrolyte

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Ceramic 1 Conductivity (10⁻⁴ S/cm)</th>
<th>PC(Li₂O) 2 Conductivity (10⁻⁴ S/cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>3.18</td>
<td>1.78</td>
</tr>
<tr>
<td>35</td>
<td>4.90</td>
<td>4.92</td>
</tr>
<tr>
<td>40</td>
<td>5.64</td>
<td>7.11</td>
</tr>
<tr>
<td>50</td>
<td>7.49</td>
<td>14.1</td>
</tr>
<tr>
<td>60</td>
<td>9.36</td>
<td>23.8</td>
</tr>
<tr>
<td>70</td>
<td>11.6</td>
<td>35.6</td>
</tr>
<tr>
<td>80</td>
<td>13.7</td>
<td>54.4</td>
</tr>
<tr>
<td>90</td>
<td>15.6</td>
<td>71.2</td>
</tr>
<tr>
<td>100</td>
<td>18.0</td>
<td>84.2</td>
</tr>
</tbody>
</table>

(i) Temperature dependent conductivity of Ceramic 1 and PC(Li₂O) 2

(ii) Arrhenius plot of the conductivity of (a) Ceramic 1 and (b) PC(Li₂O) 2

• Polymer electrolyte has higher activation energy than ceramic electrolyte

This presentation does not contain any proprietary, confidential, or otherwise restricted information
• Lithium-Air Battery Fabrication and Characterization

An all solid cell was fabricated utilizing the Ni/C/LAGP based cathode, the PC(Li_2O)/LAGP/PC(BN) solid electrolyte, and a lithium metal anode.

• Primary test result: The highest OCV observed was 2.74 Volt at room air temperature and the cell lasted 16 days before the voltage dropped to below 2.0 Volt.
Collaboration

PI: Kettering University

- **Task 2:** 5kWe catalytic flat plate fuel reformer
 - CFD study of catalytic flat plate reformer
 - Design and build the reformer prototype
 - Test and evaluate the performance

- **Task 5:** Alternative energy education program to include bio-energy and power.
 - An educational module preparation incorporating the project results for Bio-Power education

Co-PI: Michigan Molecular Institute (MMI)

- **Task 1:** High temperature fuel cell membrane
 - Increased proton conductivity than peer
 - Improved durability and thermal stability
 - Performance evaluation

- **Task 3:** High power density Lithium-Air battery at a reduced cost.
 - Optimize the combination of electrolyte that is best suitable for Li-air battery
 - Design and build the prototype
 - Test of prototype for durability and efficiency

Co-PI: Saginaw Valley State University (SVSU)

- **Task 4:** Research on high energy yield agriculture bio-crop (Miscanthus)
 - Develop energy- and economic model
 - Identify methods to produce alternative fuels from bio-crop (Miscanthus)
Future Work

Future Work (FY2011-FY2012)

<table>
<thead>
<tr>
<th>Performance improvement of High temperature PEM membrane</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Optimize a membrane electrode assembly (MEA) using PBI-phosphoric acid-POSS nanoadditive proton exchange membrane</td>
</tr>
<tr>
<td>- Test thermal stability and life-cycle sensitivity based on DOE matrix</td>
</tr>
<tr>
<td>- Map membrane conductivity history based on different RH cycles</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Design and build 5kWe catalytic flat plate fuel reformer based on CFD study</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Design layout of the reformer has to be developed</td>
</tr>
<tr>
<td>- Build the prototype using the optimized layout</td>
</tr>
<tr>
<td>- Test prototype performance and benchmark the results</td>
</tr>
<tr>
<td>- Develop cost analysis for a optimized reformer system</td>
</tr>
</tbody>
</table>
Future Work

- **Future Work (FY2011-FY2012)**

- **Explore other avenues for performance enhancement of Lithium-Air Battery**
 - The efforts for the next few quarters will be aimed at the assembly and testing of a working button cell battery utilizing the Ni/C/LAGP based cathode, the PC(Li$_2$O)/LAGP/PC(BN) solid electrolyte, and a lithium metal anode assembled in a 2032 button cell battery case.
 - Once a working battery is produced, efforts will then be focused on optimizing the processing steps to improve on the battery’s performance.
 - Once a reproducible procedure has been identified, batteries with and without the oxygen permeable membrane will be prepared and evaluated under various atmospheric conditions (i.e., different relative humidity values).

- **Cost effective procedure for bio-fuel production from high energy yield agriculture crop**
 - Economic and technical feasibility of procedures to convert the energy crop, Miscanthus x giganteous (MXG), into either hydrogen or hydrogen carriers suitable for fuel cell use.
 - Calculation of optimal combination of bio-fuel production procedures for Miscanthus bio-crop

- **Develop a Bio-Energy education module**
 - Math and science alternative energy educator program for bio-energy and power.
Summary

Project Summary

Relevance: Help to develop high temperature PEM fuel cell membrane, Lithium-Air battery and bio-fuel from bio-crop for fuel cell applications

Approach: Using patented polymer synthesis technology for high performance membrane, multi-fuel capable reformer based on CFD study, Lithium-Air battery based on high conductive polymer materials.

Technical Accomplishments and Progress: Advanced roll to roll HTPEM fuel cell membrane manufacturing procedure has been developed. A design layout of multi-fuel reformer is completed. Preliminary test of Lithium-Air battery performance evaluation is completed.

Technology Transfer/Collaborations: Active partnership with MMI, SVSU, presentations, publication and patents

Proposed Future Research: Seek answers by identifying factors limiting HTPEM fuel cell performance and Lithium-Air Battery.
Author’s Contact

Dr. K. Joel Berry
Email: jberry@kettering.edu

Dr. Susanta K. Das
Email: sdas@kettering.edu