Assessment of Solid Oxide Fuel Cell Power System for Greener Commercial Aircraft

Larry Chick
Pacific Northwest National Laboratory
May 10, 2011

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

Timeline
► Start: July 19, 2010
► End: September 30, 2011
► Percent complete: 45%

Barriers
► Identify and quantify barriers to deployment of fuel cell power systems on commercial aircraft.

Budget
• Total project funding
 – DOE share: $400K
 – Contractor share: $0
• Funding received in FY10: $400K
• Funding for FY11: $150K

Partners
• Collaborator: Boeing Commercial Aircraft Division
• Project Lead: PNNL
Objectives-Relevance

- Assess approaches to provide electrical power from solid oxide fuel cells (SOFC) on board commercial aircraft.

- Focus on more-electric airplanes, with the Boeing 787 as a case study for comparison.

- Assess optimum sizing, location and configuration of the SOFC power system.

- Identify and quantify barriers to deployment of fuel cell power systems on commercial aircraft.
Approach

- Obtain detailed understanding of current 787 electrical system, including generators, power conversion and loads.
 - Milestone: Determine reference load profile. Completed Q1, FY11

- Develop a model to determine the expected performance and fuel efficiency of various SOFC power system configurations. Use PNNL stack performance model and ChemCAD.
 - Milestone: Complete system model. Completed Q1, FY11

- Perform a trade study using the modeling tool. Assess various SOFC system configurations. Assess optimum system operating conditions, including stack voltage, system pressure and single-pass fuel utilization.
Approach, cont.

- Quantify the benefits of the optimum fuel cell power system relative to fuel savings and emissions reduction.
 - Milestone: Quantify benefits of fuel cell system, Q4, FY11. On schedule.

- Identify near-term demonstration project(s) that would decrease barriers to commercial use on airplanes.
 - Milestone: Demonstration project(s) identified, Q3, FY11. Not yet started.

- Prepare a final report to DOE.
 - Milestone: Complete final report Q4, FY11. Not yet started.
Technical Accomplishments and Progress

- Obtained extensive information from Boeing on the 787 electrical system, including generation and distribution systems, load profiles and fuel consumption.

![Diagram of aircraft engine components]

- Efficiency of converting Jet-A fuel to 230 VAC: 34%
- 918 kW

<table>
<thead>
<tr>
<th>System</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAIN ENGINES</td>
<td>59%</td>
</tr>
<tr>
<td>GEARBOX</td>
<td>96%</td>
</tr>
<tr>
<td>GENERATORS</td>
<td>60%</td>
</tr>
</tbody>
</table>

230 VAC BUS

- 432 kW
- 230 VAC to +/- 270 VDC
 - 75%
- ATRU
- 230 VAC to +/- 270 VDC
 - 75%
- TRANSFORMER 230 TO 115 VAC
 - 85%
- 180 kW
- 230 VAC to 115 VAC
 - 85%
- TRU 30 VAC TO 28 VDC
 - 80%
- 34 kW
- 230 VAC to 28 VDC
 - 80%

/+ 270 VDC BUS

- Total +/- 270 VDC Loads (kW): 324
- ECS/Pressurization: 240
- Hydraulics: 30
- Equip. Cooling: 30
- ECS Fans: 24

115 VAC BUS

- Total 115 VAC Loads (kW): 153
- ICS: 34
- Various: 119

28 VDC BUS

- Total 28 VDC Loads (kW): 27
- Flight Controls: 11
- Various: 16
- Ice Protection: 60
- Galleys: 120
- Fuel Pumps: 32
- Forward Cargo AC: 60

226 kg fuel consumed per hour to generate electricity (~5% of fuel used for propulsion at 40,000 feet).
Technical Accomplishments and Progress

Conceived electrical system using SOFC on DC bus that will save ~100 kW in power conversion losses and almost 200 kg in conversion equipment.

- Efficiency of converting Desulfurized Jet-A fuel to 230 VAC: 70%
- Efficiency of 270 VDC to 115 VAC: 80%
- Efficiency of 270 VDC to 28 VDC: 80%

Total +/- 270 VDC Loads (kW) 596

- ECS/Pressurization 240
- Hydraulics 30
- Equip. Cooling 30
- ECS Fans 24
- Ice Protection 60
- Galleys 120
- Fuel Pumps 32
- Forward Cargo AC 60

Loads moved from 230 VAC to 270 VDC: 98 kg fuel consumed per hour to generate electricity

- Total 115 VAC Loads (kW) 153
 - ICS 34
 - Various 119

- Total 28 VDC Loads (kW) 27
 - Flight Controls 11
 - Various 16
Modeled a matrix of SOFC power systems to determine anticipated fuel efficiencies. Most promising system uses steam reforming, anode recycle and compressor/expander.
Technical Accomplishments and Progress

- Determined breakeven weight change vs flight distance for various SOFC system efficiencies: A system with 70% conversion efficiency can add up to 4600 kg and still break even on fuel consumed.
Technical Accomplishments and Progress

- Generated estimates of system weights (not yet complete) for SOFC system with steam reformer, anode recycle and compressor/expander.

<table>
<thead>
<tr>
<th>Efficiency*/Added Mass (kg)**</th>
<th>SOFC Cell Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure</td>
<td>0.85</td>
</tr>
<tr>
<td>0.8 atm</td>
<td>75%/9130</td>
</tr>
<tr>
<td>3 atm</td>
<td>75%/5961</td>
</tr>
<tr>
<td>8 atm</td>
<td>75%/4652</td>
</tr>
</tbody>
</table>

- Efficiency increases with cell voltage, not much affected by pressure.
- Stack mass decreases as pressure increases because power density increases.
- Below 0.8 volts/cell BoP mass increases because gas flow rates increase.

*Efficiency = Net Electrical Energy Supplied to Bus / LHV of Kerosene

**Net change in aircraft mass does not yet include insulation, supporting structure, piping, ducting or instrumentation.
Proposed Future Work
(Now till 9/30/2011)

- Develop pre-conceptual design for most promising system and refine weight estimates based on this design. Split total load between 2 or 3 systems for redundancy.

- Develop weight estimate for on-board de-sulfurization system. Current estimates assume low sulfur fuel is available at airports.

- Test effect of elevated pressure on state-of-the-art SOFC performance. Publish the results.

- Compare alternatives to provide peaking power.

- Assess benefits of condensing water for lavatories from SOFC system.

- Identify opportunities for reducing weight of SOFC power systems.
Collaborations

- Boeing has been very helpful in explaining how modern airplane electrical systems work with relevance to fuel cell applications and in providing data on loads, power conversions and system efficiencies.

- Williams International has offered (as of 3/31) to develop a conceptual design for a custom turbo expander/compressor.

- Aviation Working Group, with members from Boeing, Cessna, Airbus and others has provided useful information.
Summary

- Preliminary analysis indicates current state-of-the-art technology is near or just under breakeven weight.
- Weight reduction has potential to increase fuel savings to significant levels.

![Graph showing weight and flight distance relationship](graph.png)

- Breakeven weight for most promising system
- Weight limit for insulation, supporting structure, piping, ducting and instrumentation
- Net weight added due to major SOFC system components minus equipment eliminated
- ~1250 kg
Technical Back-Up Slides
Efficiency Boost from Steam Reforming

• Steam reforming is endothermic

• Heat from SOFC stack is converted into ~25% increased chemical energy of reformate:

Steam Reformation of n-Dodecane:

\[\text{C}_{12}\text{H}_{26} + 12\text{H}_2\text{O} + \text{heat} \rightarrow 12\text{CO} + 25\text{H}_2 \]

\[
\begin{align*}
7552 \quad &\text{kJ/mole} \\
9421 \quad &\text{kJ/mole (125%)}
\end{align*}
\]

• **System yields >60% net efficiency**

• Steam and heat for reforming obtained from SOFC stack exhaust
Partial Oxidation (POx) Reforming

• Some systems use POx reforming.

• POx is exothermic.

• POx reformate has less chemical energy than original fuel.

• Example, dodecane: $C_{12}H_{26} + 6O_2 = 12CO + 13H_2 + \text{heat}$

\[
\begin{align*}
7552 \text{ kJ/mole} & \quad \quad \quad \quad \quad \quad \quad \quad 6618 \text{ kJ/mole (87%)}
\end{align*}
\]
Preliminary Mass Estimate

- Number of cells based on required gross power and state-of-the-art cell power density at pressure.

- Mass of anode recuperator, reformer and anode blower based on fuel consumption rate and scaled to 3.6 kW system.

- Mass of cathode recuperator based on air flow rate and scaled to 3.6 kW system.

- Compressor/Expander mass based on small jet engine specifications (Williams International) and scaled to number of compressor stages required.

- Mass of pressure vessel based on actual design calculation. Assumes titanium.

- Mass of supporting structure, insulation, piping and ducting to be determined based on pre-conceptual design.
Preliminary Mass Estimate, cont.

- Calculation of “net mass added to aircraft”:
 - Mass of SOFC power system components
 - Minus mass of AC/DC power converters (196 kg)
 - Minus mass of turbine APUs (245 kg)

- Existing generators cannot be removed because they also serve to start the main engines.

Preliminary Mass (kg) Estimate for Most Promising Configuration

at 8 atm. and 0.8 volts/cell

<table>
<thead>
<tr>
<th>Component</th>
<th>Mass (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOFC cells</td>
<td>1333</td>
</tr>
<tr>
<td>cathode recuperator</td>
<td>770</td>
</tr>
<tr>
<td>anode recuperator</td>
<td>392</td>
</tr>
<tr>
<td>reformer</td>
<td>510</td>
</tr>
<tr>
<td>anode blower</td>
<td>760</td>
</tr>
<tr>
<td>compressor/expander</td>
<td>45</td>
</tr>
<tr>
<td>pressure vessel</td>
<td>31</td>
</tr>
<tr>
<td>subtotal for major system components</td>
<td>3842</td>
</tr>
<tr>
<td>credit for elimination of conversion equipment</td>
<td>-196</td>
</tr>
<tr>
<td>credit for elimination of turbine APU</td>
<td>-245</td>
</tr>
<tr>
<td>net change in aircraft mass</td>
<td>3401</td>
</tr>
</tbody>
</table>