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Overview

Timeline
• Project start date: FY05
• Project not funded in FY06
• Project end date: 10/2011*
• Percent complete: N/A

Barriers
Production barriers addressed
• H2 molar yield (AR)
• Waste acid accumulation (AS)
• Feedstock cost (AT) 

Budget
• Total project funding: 

$1,910K (include $290K 
subcontract)

• FY10:  $230K (include $60K 
subcontract)

• Funding allocated for FY11:
$400K (include $60K 
subcontract)

Partners
• Dr. Bruce Logan

Pennsylvania State University
• Drs. David Levin and 

Richard Sparling 
University of Manitoba, Canada 
(Genome Canada Program)

*Project continuation and direction determined annually by DOE
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Relevance

• Objective: Develop direct fermentation technologies to convert 
renewable lignocellulosic biomass resources to H2.

- Optimize fed-batch bioreactor (hydraulic and solid retention time) 
(Task 1).

- Develop genetic tools to improve H2 molar yield (Task 2).
- Design and build a tubular type MEC and conduct performance 

evaluation (Task 3).
• Relevance: Address directly feedstock cost and H2 molar yield 

barriers to improve technoeconomic feasibility.

Characteristics Units 2013 Target 2011 Status

Yield of H2 from glucose Mole H2/mol glucose 4 3.2

Feedstock cost* Cents/lb glucose 10 12 

* DOE Office of Biomass Program status and target
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Objectives/Approach/Milestone
Task 1: Bioreactor Performance

• Objective: Address feedstock cost and improve the performance of 
bioreactors for H2 via fermentation of lignocellulose.

• Approach: Optimize bioreactor in fed-batch mode by testing parameters 
such as amount and frequency of cellulose feedings and acclimation of the 
cellulose-degrading bacterium Clostridium thermocellum.

Lignocellulosic Biomass

Clostridium thermocellum

Bioreactor Performance

Milestone Completion Date Status

3.2.1.2 Determine the solid and hydraulic retention time on 
rates and yield of H2 in fed-batch reactor 

4/11 On track

Fermentation
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Task 1 – Technical Accomplishments
Fed-Batch Bioreactor Setup

C. thermocellum are immobilized on cellulose, allowing the bulk of the growth 
medium to be replaced without diluting the fully acclimated microbes.

• Work in FY10 determined the effect of substrate loadings on rates and yields of H2, 
which guides the development of fed-batch fermentation.

• In a one-liter working volume bioreactor, we drained and replenished daily (hydraulic 
retention time = 24 h) with 500 mL fresh medium containing 2.5 g/L cellulose. 

Settle, Drain, Feed

Settled microbes in yellow; 
~80% recovery

5

Acclimated microbes turned yellow
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Task 1 – Technical Accomplishments
Hydrogen Production in Fed-Batch Bioreactor 

Daily feedings of 2.5 (up to 96 h) and 5.0 g/L of cellulose conducted:
• Fed-batch mode adapted C. thermocellum to degrade cellulose, shown by a 

decrease in “time to peak H2 production” (faster acclimation; t1 to t8).
• With faster rate of H2 (> 53% increase), a smaller bioreactor can be built to 

reduce cost. 
• Higher bacterial cell mass was observed; this will lead to higher H2 output.

On track to complete Milestone “Determine the solid and hydraulic retention time on 
rates and yield of H2 in fed-batch reactor (4/11).

6

Batch Cellulose 
Concentration 

Time to Peak 
H2

Production          

Amount of 
H2 Produced 

Average H2
Production Rate

(g/L) (t, h) (mmoles) (mmol L-1 h-1)

1
2.5

18:43 14.92
0.60

2-4 4:14 13.85
5

5.0
8:09 17.57

0.92
6-8 5:27 22.11
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Task 1 – Technical Accomplishments
H2 From “Untreated” Corn Stover Using a Co-Culture

The utilization of untreated biomass 
lowers feedstock cost.

• We scaled up fermentation of 
untreated corn stover using a co-
culture of Clostridium thermocellum 
and a Clostridium consortium

• C. thermocellum hydrolyzed both 
cellulose and hemicellulose, with the 
latter utilized by the consortium.

• The co-culture produced 64% more H2
than C. thermocellum alone, 
suggesting better substrate utilization.

• The metabolite profiles also 
corroborate the synergy of the co-
culture.
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Objectives/Approach/Milestone 
Task 2 – Develop Genetic Methods for Metabolic Engineering

• Objective: Improve H2 molar yield 
(mol H2/mol hexose) via 
fermentation. 

• Approach: Redirect metabolic 
pathways to maximize H2
production via the development of 
genetic methods.

- Design plasmids and optimize 
transformation protocols.

- Create mutant host suitable for 
targeted mutagenesis.

Milestone Completion
Date

Status

3.2.2 Produce one genetic transformant in C. thermocellum (FY10) 9/10 Completed

3.2.2 Obtain one mutant of C. thermocellum lacking the pyrF gene
      as the platform host for targeted mutagenesis (FY11)

9/11 On track

8

NREL increased the H2 molar 
yield by nearly 2-fold in FY 2010.
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Develop Tools for Genetic Transformation
Task 2 – Technical Accomplishments

Completed Milestone “Produce one genetic transformant in Clostridium thermocellum” 
(8/10).

• NREL co-developed genetic tools (with the University of Manitoba): proprietary 
plasmid and transformation protocols, and obtained two mutants of C. thermocellum.

• Transformation was verified by (1) growth in antibiotic (chloramphenicol,100 µg/mL); 
(2) PCR of the antibiotic gene; and (3) retransformation in E. coli.

• This will lead to blocking competing pathways to improve H2 molar yield.

1       2       3       4

Cell growth:

1. Transformant in antibiotic
2. Transformant without 

antibiotic
3. Control cells in antibiotic
4. Control cells without 

antibiotic. 

PCR  of the
antibiotic gene:
• Lanes 1-2: 

transformant #1;
• Lanes 3-4: 

transformant #2;
• Lane 5: plasmid 

control.

9
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Task 2 – Technical Accomplishment
Develop Targeted Pathway Mutant

Improve plasmid stability
• We discovered that the 

proprietary plasmid is not stable 
in the transformant. Work is 
underway to replace its origin of 
replication (ori) to improve its 
long-term stability.

On track to complete Milestone “Obtain one mutant of C. thermocellum lacking the 
pyrF gene as the platform host for targeted mutagenesis” (9/11).

Block pyruvate-to-formate pathway
• Blocking the pyruvate-to-formate

pathway (with hypophosphite) 
increased H2 production by 81% 
(FY09) – proof of concept.

• Work is ongoing to create a ∆pyrF
mutant host to generate the targeted 
pathway mutant via an effective 
suicide method.

ori

Replacing with a more 
stable Ori suitable for C. 
thermocellum

remedy

10

Subculturing
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Objectives/Relevance
Task 3 – Electrochemically Assisted Microbial Fermentation

Objective: Improve H2 molar yield (mol H2/mol hexose) by 
integrating dark fermentation with microbial electrolysis cell (MEC) 
reactor to convert waste biomass to additional H2.

Biomass

Dark 
Fermentation

Acetic, formic, 
lactic, succinic

acids and 
ethanol

N1 = 2 – 4 H2

MEC

N2 = 5.8 - 7.6 H2

 N1 + N2 = 7.8 – 11.6 mol H2 per mol sugar

One-stage process: slow Two-stage process: fast

11
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Approach/Milestone
Subtask 3: Electrochemically Assisted Microbial Fermentation

Milestone Completion Date Status

3.2.3 Prototype reactor operational (FY10) 9/10 Completed

3.2.3 Correlate removal of the subcomponents of the NREL 
fermentation effluent with current density and H2 production 

(FY11)

9/11 On track
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Task 3 – Technical Accomplishments
Methane Reduction by Setting Anode Potential

• Compare “boosting voltage (Eap)” 
with a power source (typically 
adding 0.6 V) with a set anode 
potential

• When adding 0.6 V, the anode is 
typically at -0.4 V, so we chose 
this and more positive anode 
potentials

• Highest gas production at 
Ean = - 0.2 V

V Energy Input 
(kWh/m3

reactor)
Energy Input
(kWh/m3

H2)
ŋE+S
(%)

ŋE
(%)

ŋS
(%)

Cycle Time
(h)

0.6 (Eap) 1.7 1.7 57 187 81 26

-0.4 1.2 2.9 27 114 34 40

-0.2 3.0 2.3 59 143 97 16

0 3.9 2.9 55 113 102 10

0.2 5.5 4.7 40 71 90 8

13
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Task 3 – Technical Accomplishments
Methane Reduction by Setting Anode Potential

• Continuous operation at EAn = - 0.2 V

• Day 39, 68% H2, 21% CH4
• (average daily gas production 34 mL) 
•  CH4 increased up to 34% by Day 46.

• pH shock tried… didn’t work. 

•What did work? 
Placing the brush anode into new clean 
reactor (Day 85)86 % H2, 3% CH4
 Methanogens were not on anode, but 
in reactor assembly

pH shock

Reactor & cathode change

Conclusion: Setting anode potential can improve cell performance, but it 
was difficult to eliminate CH4 completely in single-chamber MECs. 

14
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Task 3 – Technical Accomplishments
Design New Tubular MECs

Completed Milestone “Design tubular MECs to reduce methane generation” (9/10)

Pre-acclimated anode 
from MFCs 

Cathode

Anode

AEM

• A two chambered MEC with AEM , 0.9 V applied 
• Anode chamber (135 mL)  3 brush anodes, 1.5 g sodium acetate/L, HRT = 1 day
• Cathode chamber (147 mL)  Pt coated stainless steel, 50 mM PBS, HRT = 1 day

Gas collection

15
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Task 3 – Technical Accomplishments
Tubular MEC Performance

Completed “Test performance of the new system” (12/10).
On track to complete Milestone “Correlate removal of the subcomponents of 
the NREL fermentation effluent with current density and H2 production” (8/11).

Stable current generation in a 
continuous mode  17 mA, current 
density 60 A/m3

. 

 Almost pure H2 (no CH4, CO2) with stable    
current

CE 79-84%, rcat = 88-107%, CODrem > 90%
H2 production rate 0.8 H2 m3/m3-d (Day 13) 

<Continuous gas generation>
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Collaborations

• Task 1 (Bioreactor): 
Dr. Ali Mohagheghi, National Bioenergy Center at NREL (Biomass 
pretreatment and characterization)

• Task 2 (Genetic Methods):
– Dr. Mike Himmel at NREL (funded by the DOE BER Program)
– Drs. David Levin and Richard Sparling at the University of Manitoba, 

Canada (funded by the Genome Canada Program). NREL is an 
international collaborator in the Genome Canada Grant award to co-
develop genetic tools for pathway engineering in C. thermocellum.

• Task 3 (MEC):
Dr. Bruce Logan, Penn State University (microbial electrolysis cells 
to improve H2 molar yield)
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Proposed Work

Task 1:
• Repeat fed-batch experiments (2.5, 5, and10 g/L cellulose) in one-liter bioreactor 

for cellulose consumption, carbon balance, rates and yield of H2 (FY11).
• Scale up fed-batch experiment in 5-L bioreactor as above, testing hydraulic 

retention time and feeding strategy  (FY11/12).
• Collect, analyze, and send fermentation effluent to PSU to generate H2 via MEC 

integration (FY11/12).
• Type microbial community of the consortium if supported by the Program (FY12).

Task 2:
• Modify the proprietary plasmid to improve its long-term stability (FY11).
• Construct a C. thermocellum mutant host (pyrF knockout) and start deleting 

pyruvate-to-formate pathway (FY11).
• Test the above mutant for H2 rates, yield, and carbon balance (FY11/12).
• Target additional competing pathways to improve H2 molar yield (FY12).

Task 3:
• Complete analysis of fermentation effluent (FY11).
• Test performance of the new system with fermentation effluent (FY11).
• Conduct tests on performance with respect to hydrogen yields, hydrogen 

production rates, and gas composition for the fermentation effluent (FY11/12).
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Summary

Task 1:
• Operated fed-batch reactor with substrate concentrations of 2.5 and 5.0 g/L and hydraulic 

retention time of 24 hr, and observed shorter acclimation time, improved rates of H2, and 
elevated total cell biomass concentrations. 

• Demonstrated that a co-culture (C. thermocellum and a Clostridium consortium) can ferment 
untreated corn stover and yielded 64% more H2 than C. thermocellum alone. The outcomes 
work toward reducing feedstock cost. 

Task 2:
• Developed genetic tools via collaboration and generated C. thermocellum mutants harboring 

the proprietary plasmid.
• Continue to improve stability of the plasmid to allow plasmid-based expression.
• Work is ongoing to generate a C. thermocellum mutant host for deleting competing pathway.

Task 3:
• Setting anode potentials in single chamber MECs could improve reactor performance, but did 

not completely eliminate methane generation. 
• Higher gas production and H2 composition were obtained at EAn = - 0.2 V compared to adding 

voltage of Eap = 0.6 V.
• By designing and operating a tubular MEC composed of two chambers, pure H2 was obtained. 

Achieved up to 0.8 H2 m3/m3-d.
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