Characterization of Materials for

Photoelectrochemical Hydrogen
Production (PEC)

Clemens Heske

Department of Chemistry,
University of Nevada, Las Vegas

May 12, 2011 Project ID #
PD051

This presentation does not contain any proprietary, confidential, or otherwise restricted information




Overview

Timeline
Project start date: 5/6/08
Project end date: 9/30/11
Percent complete: 83%

Budget

Total project funding
— DOE share: $390k
— Contractor share: $97.5k

Funding received in FY10:

$100k

Funding for FY11:
$90k

Barriers

Barriers addressed
— H. System Efficiency
— Lifetime

— Indirectly: G. Capital
Cost

Partners

Interactions/collaborations:
DOE EERE PEC WG (NREL,
LLNL, HNEI, UCSB, Stanford,
MVSystems), Berkeley Lab,
HZB Berlin, U Wurzburg

Project lead: C. Heske, UNLV



Activity Overview: Electronic
and Chemical Properties of PEC
candidate materials (Relevance)

To enhance understanding of PEC materials and
interfaces and promote break-through discoveries:

 Ultilize cutting-edge soft x-ray and electron
spectroscopy characterization

* Develop and utilize novel characterization
approaches (e.q., in-situ)
* Provide characterization support for surface validation

 Address materials performance, materials lifetime, and
capital costs through intense collaboration within (and
outside of) the PEC WG



Research Activity (Approach)

« Overarching goal: compile experimental information
about the electronic and chemical properties of the
candidate materials studied within the PEC WG

— Determine status-quo (includes: find unexpected findings)
— Propose modifications (composition, process, ...) to partners
— Monitor impact of implemented modifications

« Use a world-wide unique “tool chest” of experimental
techniques

 Address all technical barriers related to electronic and
chemical properties of the various candidate materials,
in particular:
— Bulk and surface band gaps
— Energy-level alignment
— Chemical stability
— Impact of alloying/doping



Collaborations
(Relevance, Approach, & Collaborations)

« Collaborations are at the heart of our activities:
— Supply of samples
— Most important: supply of open questions, issues, challenges
— Interactive interpretation of results
— Joint discussion of potential modifications
— Involvement in implementing modifications

* Great collaboration partners in the PEC WG:
— NREL: (Ga,In)P,
— UC Santa Barbara: Fe,0, et al.
— Stanford U: MoS,
— LLNL: Theory ((Ga,In)P,, liquid/solid interfaces)
— U Hawaii/HNEI: WO,, W(X)O(Y);, Cu(In,Ga)(S,Se),
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UV/Soft X-ray Spectroscopies (Approach)

Photoelectron Spectroscopy -

(PES, XPS, UPS)
Ae Ae
UV-Visible
Absorption
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X-ray Absorption Spectroscopy (XAS)
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Plus: Atomic Force Microscopy
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SALSA: Solid And Liquid Spectroscopic Analysis
‘at Beamline 8.,Advanced Light Source, LBNL

| _Collaboratlon UNLV University of
Wurzburg, Helmholtz-Zentrum Berlin
fur I\/Iaterlallen und Energie




Technical Challenges (the big three)

Material Characteristics for Photoelectrochemical Water Splitting

Electron

4 Energy
— el = = = = B H,0H,
By 1
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Counter
Electrode

L/

After John Turner, NREL

» Efficiency —
the bulk band gap (E,) must

be at least 1.6-1.7 e\7 but not
over 2.2 eV

» Material Durability —
semiconductor must be
stable in aqueous solution

» Energetics —
the surface/interface band
edges must be optimized
with respect to the H,O redox
potentials

All must be satisfied
simultaneously




Requirements for PEC Materials
(Relevance)

« Chemical stability

* Optimized bulk band gap for photon
absorption

» Optimized band edge positions at the
relevant surfaces

e ... (e.g., cost!)



(Ga,In),P, thin films for PEC

With:

Todd Deutsch and John Turner
National Renewable Energy Laboratory

Tadashi Ogitsu and Brandon Wood
Lawrence Livermore National Laboratory

David Prendergast
Lawrence Berkeley National Laboratory
a »
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&5

For more details, please see PD035 and PD058
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Motivation: compile data for (Ga,In),P, similar to
prev:ous results on WO, and WO3 ‘Mo

(FY 2010 Accomplishments)
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EIectromc surface structure of as-recelved GaInP2 surface ( “dlrty”)
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Surface-sensitive measurements are powerful, but are also influenced by surface adsorbates
HOMO-LUMO energy separation of surface adsorbates (“band gap”): ~ 3.3 eV

Compare: UV-Vis and photocurrent spectroscopy (NREL): ~ 1.8 eV

Work function of surface adsorbates: ~ 4.5 eV
Current work: optimize surface cleaning procedures to minimize adsorbate influence



Normalized Intensity (a.u.)

XES & XAS of InP, GaP, and GalnP,
(Accomplishments)
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Normalized Intensity (a.u.)
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XES & XAS of InP,
GaP, and GalnP,

(Accomplishments)
* Lower bound for electronic
surface-near bulk band gap
can be determined
* Needs to take core-
exciton and spin-orbit
splitting (0.84 eV) into
account
* Derived lower-bound band
gaps:
e InP: 2.6 eV (Lit: 1.34 eV)
e GaP: 2.8 eV (Lit: 2.46 eV)
* GalnP,:1.5eV (1.75eV)
* Needs theory (and cleaner
samples) for better
understanding



XES Companson of Theory and Expenment (Accompl )

InP GaP
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[
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—— Calibrated Experimental Data —— Callibrated Experimental Data
—— Theoretical Lorentzian plus Gaussian —— Theoretical Lorentzian plus Gaussian
—— Theoretical Lorentzian only —— Theoretical Lorentzian only

Theoretical spectra include matrix elements and were shifted to align with experiment



XES: Comparison of Theory and Experiment (Accompl.)

GalnP2

XES P Lz,s
hv =150 eV

* Excellent agreement between
theory and experiment for all
three compounds
(InP, GaP, GalnP,)

* Further refinement necessary

* Will allow us to derive exact
position of VBM by comparing
experiment and theory

* Next step: comparison of XAS
experiment and theory

Normalized Intensity (a.u.)
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—— Callibrated Experimental
—— Calculated Disordered Phase

Theoretical spectra include matrix elements and were shifted to align with experiment



Normalized Intensity (a.u.)

XPS analysis of tested
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Atomic Force Microscopy (chemical stability)
of a tested GalnP, surface (Accomplishments)

Sample Treatment Electrolyte
MJ247-3 -8mA/cm? 22 hrs,  0.1M HNO; +0.5M

Zonyl FSN-100




Impact of Exposure to Electrolyte (Accomplishments)
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* The region of the sample exposed to electrolyte exhibits surface roughness not seen in the
unexposed region 21

* The exposed region is highly corrugated, whereas the unexposed region is flat and appears ordered



Impact of Exposure to Electrolyte (Accomplishments)
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Comparison: Before/After Exposure (Accomplishments)

nm
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-100
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* Erosion or etching appears to have
exposed a skeletal framework

* Unexposed regions show a row-like
structure (step edges?)



Transition Region (Accomplishments)
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Interface between the exposed and unexposed regions shows that surface roughness of the unexposed
region is due to erosion, not the deposition of material onto the surface 24



(Ga,In),P, Summary
(Accomplishments)

* First band gap determination experiments

« Surfaces: need optimized surface cleaning

* Bulk: XES/XAS derives 1.5 eV — needs correlation
with theory (where are the correct band edges?)

 First comparison of XES theory and experiment
yields excellent agreement

 First analysis of electrolyte exposure
« Chemical changes (XPS)
* Morphological changes (AFM)
« Future: spectroscopy in-situ (XES/XAS)




MoS, nanomaterials for PEC

With:

Zhebo Chen and Tom Jaramillo
Stanford University

For more details, please see PD033



Very first results (Accomplishments)

* Optimized XES spectrometer in SALSA for S L, ; XES
(to allow in-situ spectroscopy) — MoS, reference

Normalized Intensity

SL,,XES

MoS,

Valence Band

E__=200eV

VBM

140 145 150 155 160
Emission Energy (eV)

Collaboration: UNLV, University of

Wirzburg, Helmholtz-Zentrum Berlin
e Il B fUr Materialien und Energie



Very first results (Accomplishments)

« Developed prototype liquid-solid interface cell for XES

in SALSA (to allow in-situ spectroscopy) —
Mo metal reference under 10 um of H,O
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Very first results (Accomplishments)

« Developed prototype liquid-solid interface cell for XES

in SALSA (to allow in-situ spectroscopy) —
Mo metal reference under 10 um of H,O
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Very first results (Accomplishments)

« Developed prototype liquid-solid interface cell for XES

in SALSA (to allow in-situ spectroscopy) —
Mo metal reference under 10 um of H,O

—
XES
E . =275¢eV
Mo/10um H,0
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Electronic Structure of Fe,O, Thin
Films

With:
A. Forman, A. Kleiman-Shwarsctein,
and Eric McFarland

University of California, Santa Barbara

UCSB



Sample Preparation (Approach)

. xnmFe
Pt (150 nm)

Quartz wafer

Ti Foll

“Real world” Film

(UCSB)

Annealed in air
*700 C, 4hr,2 C/min

3

Prototypical Films
(UNLV)

Heated in partial O,
«600 C, 90 seconds

)

Heated in partial O,
«600 C, 3 minutes

)

Pt (150 nm)

Quartz wafer

32




Intensity (a.u.)

1000

Effect of calcination on thin Fe,O, samples
(FY 2010 Accomplishments)

Uncalcined
(10nm)

Calcined
(10 nm)

XPS
Mg K
C1 1s
C 1s Fe 3p
L Fe 3s l
TI % P t4d, Ptdd,, >
\ Fﬁz”&z 4imz

800

600 400
Binding Energy (eV)

* Ti and Pt are
detected at the
surface after
calcination

* Pt peaks not seen
in thicker calcined
samples (not
shown)



Electromc surface structure (Accompllshments)
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Electromc surface structure (Accomplishments)

Normalized Intensity (a.u.)
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Summary of Fe,0, results
(Accomplishments)

* Earlier findings: calcination modifies chemical
surface structure, leading to Ti segregation;
in thin films, Pt signals are observed at the
surface

* Now: electronic structure at the surface

« Favorable surface band gap
* Redox-potentials are straddled, but only barely

 Clarification of “high-performance” character



Research Plan & Basis for

Continuation of Research
(Proposed Future Work)

Continue the collaborations with our existing partners

— (Ga,In)(P,N) with NREL and LLNL
— WS, and MoS, with Stanford
— WO, and Cu(In,Ga)Se, with HNEI

Determine electronic and chemical properties of various PEC
candidate materials (see list on collaboration slide) and answer
as many questions as possible

Study the impact of material modifications by the collaboration
partners (e.g., alloying, doping, ...)

Study material durability after exposure to a variety of ambient
environments

Find unexpected things (e.g., guest species)
Depending on funding availability: in-situ studies



Overall Summary (Relevance)

Approach allows unprecedented insight into the electronic and
chemical structure of PEC candidate materials from within
(and outside of) the DOE WG

Portfolio of experimental techniques ranging from “standard”
to “pushing the edge forward” (in-situ on the horizon)

Requires close collaboration with synthesis groups, theory
groups, and other characterization groups

Results will be as good as the questions we ask!

Addresses materials performance, lifetime, and cost directly or
indirectly through collaboration partners

Met all program milestones and delivered all deliverables of
characterization data and analyses to program collaborators
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