Hydrogen Storage
- Session Introduction -

Ned T. Stetson

2011 Annual Merit Review and Peer Evaluation Meeting
May 11, 2011
Goal and Objectives

Goal: On-board hydrogen storage for > 300 mile driving range across different vehicle platforms, without compromising passenger/cargo space or performance

Develop on-board storage systems that meets **all** DOE system targets simultaneously.

- **System Engineering / Systems Analysis**
 - Demonstrate the technologies required to achieve the 2015 DOE on-board vehicle hydrogen storage goals
 - Continue storage system analysis/projections for advanced storage system capabilities & development of system models for on-board storage systems
 - Determining performance gaps for early market applications

- **R&D on materials for breakthrough storage technologies**
 - Increased focus on carbon fiber to reduce the cost of physical storage systems
 - Continue new hydrogen storage material discovery R&D for advanced storage systems
 - Strengthen coordination between basic & applied research within DOE and across agencies
Challenges

For all applications: Storing an adequate amount of hydrogen in an acceptably small volume efficiently at a reasonable temperature, pressure and cost

<table>
<thead>
<tr>
<th>Near-term Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressed gas storage offers a near-term option for initial vehicle commercialization* and early markets</td>
</tr>
<tr>
<td>• Cost of composite tank is challenging</td>
</tr>
<tr>
<td>• > 75% of the cost is projected to be due to the carbon fiber layer</td>
</tr>
<tr>
<td>• 50% of the carbon fiber cost is estimated to be in the precursor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cost is in the CF Matrix!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type IV 700 bar</td>
</tr>
<tr>
<td>Hydrogen, $18</td>
</tr>
<tr>
<td>Balance of Tank, $79</td>
</tr>
<tr>
<td>Regulator, $200</td>
</tr>
<tr>
<td>Valves, $282</td>
</tr>
<tr>
<td>Other BOP, $154</td>
</tr>
<tr>
<td>Carbon Fiber Layer, $2,721</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Long-term Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials-based solutions targeted to meet all on-board storage targets simultaneously</td>
</tr>
<tr>
<td>• Improving gravimetric and volumetric capacities</td>
</tr>
<tr>
<td>• Having sufficient kinetics within appropriate temperature and pressure ranges</td>
</tr>
<tr>
<td>• Lowering cost of overall engineered systems</td>
</tr>
</tbody>
</table>

*: Greater than a 400 mile driving range independently validated for a Toyota Advanced FCEV with 700 bar Type IV composite cylinders, http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/toyota_fchv-adv_range_verification.pdf
Hydrogen Storage Budget

FY 2010 Appropriation = $32.0M
FY 2012 Request = $17.5M

EMPHASIS

- Systems approach through the Engineering CoE, in collaboration with independent materials development projects, to achieve light-duty vehicle targets
- Continued close coordination with Basic Energy Science in 2010 & 2011 and improve coordination with National Science Foundation, ARPA-e, and Energy Frontier Research Centers activities
- Focus on cost reduction for high pressure tanks
- Increased analysis efforts for both low and high production volumes
- Increased emphasis on early market storage applications

Note: FY11 appropriation to be determined.
Current Status: Projected Capacities vs Targets

Progress is being made, but no technology meets all targets simultaneously.

• Bars represent the capacity range of technologies modeled in the given year, overall average for all technologies analyzed indicated.

• Projections performed by Argonne National Laboratory using the best available materials data and engineering analysis at the time of modeling.
Identified opportunities for cost reduction of composite cylinders for compressed hydrogen storage

- NAS recommended greater emphasis be put on reducing the cost of high-pressure composite hydrogen storage tanks*
- Competed new SBIR and FOA topics on lower cost tanks/carbon fiber (CF) in FY 2011.

TIAX cost analysis shows that CF can contribute more than 75% of composite cylinder costs.

Progress: Lower Cost Precursors

Initiated program on use of low-cost commercial textile-grade PAN with Methyl Acrylate comonomer as a high-strength CF precursor

Objective: To produce high strength CF from commodity textile based precursors.
- Leverages prior successful low-strength CF work using vinyl acetate (VA) comonomers.
- Previous results indicate methyl acrylate (MA) comonomer leads to improved mechanical properties over fibers with VA.

CF Cost Contributions*:
- 43% Precursor
- 57% Processing

This project is 50% cost shared by an industrial producer of textile-grade PAN fibers and co-funded with the Materials Group of the DOE/EERE Vehicle Technologies Program.

Melt-spun PAN precursor technology has the potential to reduce the production cost of the high strength CF’s by ~ 30%.*

Melt spin processing much less capital intensive than traditional wet spin technology

- Low production cost
- High production rate
- Environment-friendly

Benefits vs Traditional Wet Spun Processing:
- ~ 30% lower precursor plant capital investment
- ~ 30% lower precursor plant operating cost
- Typical precursor line speed increased by ≥ 4X at winders

ORNL-Virginia Tech team has demonstrated melt spinnable PAN/MA with physical properties approaching commodity grade PAN

*: [Kline & Company, 2007]
The 3 Materials Centers of Excellence investigated over 420 materials and combinations experimentally and millions computationally.

- Centers of Excellence: Hydrogen Sorbents; Chemical Hydrogen Storage Materials and Reversible Metal Hydrides
- 51 partners: 13 Federal Laboratories, 29 Universities and 9 Companies
- Over 550 peer-reviewed scientific publications
- Accomplishments include:
 - Sorbents: increased gravimetric capacity by >40% and volumetric capacity by ~150% and produced materials with > 6000 m²/g.
 - Chemical H₂ Materials: developed 10 regeneration strategies for spent ammonia borane (~19 wt.%) leading to a simple, one-pot regeneration scheme with low process costs (*Science* 331, 1426 (2011)).
 - Metal Hydrides: demonstrated >12 wt.% reversible capacity, approaches to increase release kinetics by 60x and developed computational methods to rapidly screen millions of discreet compositions.

Many accomplishments also applicable to other areas, e.g., Batteries, Chemical processing, sensors, CO₂ Sorbents, etc.
Prior to DOE's accelerating R&D in H₂ storage materials research, only a limited number of H₂ storage materials were well characterized.
Materials Progress: Today

Many more materials well characterized and converging toward the DOE system targets

Open symbols denote new mat'ls for FY2009

Material capacity must exceed system targets

DOE system targets

Observed H₂ Capacity, weight %

H₂ sorption temperature (°C)

Temperature for observed H₂ release (°C)

Progress: H_2 Storage Engineering Center of Excellence (HSECoE)

The HSECoE effort helps to determine required material properties to guide materials development efforts.

- Developed complete, integrated systems models for 3 material classes
- Established baseline system performance with state-of-the-art design and best-of-class materials

Modular approach allows each parametric system model to be run through simulated drive cycles with fuel cell and vehicle-level models to predict performance.
Progress: Projections against 2010 targets

Modeled projections enable identification of technology gaps and knowledge gaps to focus R&D efforts.

1. Gravimetric Density
3. System Cost
4. Fuel Cost
5. WTPP Efficiency

Reversible Metal Hydrides

1. Gravimetric Density
3. System Cost
4. Volumetric Density
5. Fuel Cost
6. WTPP Efficiency
7. Fill Time

Chemical Hydrogen Storage

1. Gravimetric Density
3. System Cost
4. Volumetric Density
5. Fuel Cost
6. WTPP Efficiency
7. Fill Time

Hydrogen Sorbents

1. Gravimetric Density
3. System Cost
4. Volumetric Density
5. Fuel Cost
6. WTPP Efficiency
7. Fill Time

Loss of Useable Hydrogen
Progress: Cryo-sorbents

New sorbent materials synthesized with surface areas of >6000 m²/g with material capacities over 8 wt% at 77K and <100bar.

- Demonstrated air and water stable, metal-free porous polymer networks (PPN)
- Independently verified excess uptake of 8.5 wt.% at 60.4 bar (28-56 g/L)
- Computational modeling used to guide synthesis efforts
- Predicted BET surface area 6600 m²/g; validated 6143 m²/g experimentally
- Measured 9 wt% excess uptake and 28 g/L at 77K and 70 bar for NU-100, independent verification underway
Progress: Room Temperature Chemisorption Validation

International taskforce established to confirm if excess adsorption at room temperature can be increased by spillover effect.

Goals:
- Ascertain H/H₂-catalyst-substrate interactions & mechanisms
- Establish reproducibility of synthesis and validity of measurements
- Establish whether DOE targets can be reached

DRIFTS analysis gives insight into carbon activation

Accomplishments:
- Measurement protocols validated
- Round-robin testing of samples continues
- Spectroscopic evidence of spillover demonstrated
Synthesized air & thermally stable CBN and demonstrated 2x improved kinetics for 60% mass-loaded AlH₃ slurry

Parent Carbon-Boron-Nitrogen (CBN) heterocycle compound synthesized that is air and thermally stable and delivers up to 1.5 equiv. H₂

Demonstrated thermal control of AlH₃ decomposition

Ti Catalyzed 60 wt.% AlH₃ slurry demonstrates 2x faster H₂ than dry powder
Demonstrated 12 wt.% reversible capacity for \(\text{Mg(BH}_4\text{)}_2 \)

 Evidence indicates that >14wt.% might be possible (theoretical capacity 14.8 wt.%)

2.5 wt.% can obtained under milder conditions by cycling between \(\text{Mg(BH}_4\text{)}_2 \) and magnesium triborane \([\text{Mg(B}_3\text{H}_8\text{)}_2]\)
Progress: Early Market Applications

Developing the performance requirements and identifying technology gaps for key near-term applications

Identifying performance requirements and technology gaps for near-term Motive (NREL) and Non-motive (SNL) applications.

Gathered input from stakeholders (end-users, integrators and technology developers)

- Workshops with breakout sessions;
- Interviews and
- Other direct feedback mechanisms

Applied the Kano Method of analysis

- Coupled Positive and negative questions

Final results expected in September

<table>
<thead>
<tr>
<th>Linear</th>
<th>Wow</th>
<th>Linear</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Dislike it</td>
<td>2 Live with it</td>
<td>3 Don’t care</td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>Q</td>
</tr>
</tbody>
</table>

Kano Method Matrix

- **Must Have**
 - 1 Dislike it
 - 2 Live with it
 - 3 Don’t care
 - 4 Expect it
 - 5 Like it

- **Linear**
 - 1 Dislike it
 - 2 Live with it
 - 3 Don’t care
 - 4 Expect it
 - 5 Like it

- **Wow**
 - 1 Dislike it
 - 2 Live with it
 - 3 Don’t care
 - 4 Expect it
 - 5 Like it

- **Indifferent**
 - 1 Dislike it
 - 2 Live with it
 - 3 Don’t care
 - 4 Expect it
 - 5 Like it

- **May Not Make Sense**
 - 1 Dislike it
 - 2 Live with it
 - 3 Don’t care
 - 4 Expect it
 - 5 Like it

- **May Not Make Sense**
 - 1 Dislike it
 - 2 Live with it
 - 3 Don’t care
 - 4 Expect it
 - 5 Like it
Summary

Key Milestones and Future Plans

Physical Storage
- Two projects underway to reduce the cost of carbon fiber precursors
- Competed new efforts through SBIR and Funding Opportunity Announcement topics

Material-based Storage
- Hydrogen Storage Engineering Center of Excellence completed model development and established baseline for current materials-based system status
- Continued to improve materials-based performance through independent projects
- Carried out Funding Opportunity Announcement topic or new materials discovery.

<table>
<thead>
<tr>
<th>FY 2011</th>
<th>FY 2012</th>
<th>FY 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>2Q 2011 HSEoC: Phase I to Phase II decision. Status of each material class and partner to be reviewed.</td>
<td>3Q 2011: Hydrogen Storage Materials Database Released to Public</td>
<td>2Q 2012: HSECoE: Provide at least one full scale system design concept</td>
</tr>
<tr>
<td>2Q 2011: FOA on for new research on lower cost compressed storage and new materials discovery.</td>
<td></td>
<td>4Q 2013: Down select on-board reversible storage materials with potential to meet 2015 targets</td>
</tr>
<tr>
<td>4Q 2010: Final Report due for Material Centers of Excellence</td>
<td></td>
<td>4Q 2013: Down-select hydrogen storage approaches with potential to meet 2015 targets</td>
</tr>
</tbody>
</table>
Session Instructions

- This is a review, not a conference.
- Presentations will begin precisely at the scheduled times.
- Talks will be 20 minutes and Q&A 10 minutes.
- Reviewers have priority for questions over the general audience.
- Reviewers should be seated in front of the room for convenient access by the microphone attendants during the Q&A.
- Please mute all cell phones, BlackBerries, etc.
- Photography and audio and video recording are not permitted.
Reviewer Reminders

• Deadline for final review form submittal is May 20th at 5:00 pm EDT.

• ORISE personnel are available on-site for assistance. A reviewer-ready room is set up in room The Rosslyn Room (on the lobby level) and will be open Tuesday – Thursday from 7:30 am to 6:00 pm and Friday 7:30 am to 2:00 pm.

• Reviewers are invited to a brief feedback session – at 5:20 pm on Thursday, in this room.
The Hydrogen Storage Team

For more information contact:

Ned Stetson, Team Leader
202-586-9995
ned.stetson@ee.doe.gov

Grace Ordaz
202-586-8350
grace.ordaz@ee.doe.gov

Scott McWhorter
On Assignment to DOE
Savannah River Nat’l Lab
202-586-7009
scott.mcwhorter@ee.doe.gov

Carole Read
202-586-3152
carole.read@ee.doe.gov

Golden Field Office:
Jesse Adams
James Alkire
Paul Bakke
Katie Randolph
EERE Postdoctoral Fellowship Program

- Fuel Cell Technologies Program Opportunities Available
 - Conduct applied research at universities, national laboratories, and other research facilities
 - Up to five positions are available in the areas of hydrogen production, hydrogen delivery, hydrogen storage, and fuel cells

- Applications are due June 30, 2011
- Winners will be announced mid-August
- Fellows will begin in mid-November 2011

www.eere.energy.gov/education/postdoctoral_fellowships/