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Timeline

* Project start date:
September 1, 2008

* Project end date:
January 31, 2013

» Percent complete: 60%

Budget

* Total project funding:

— DOE share: $1,899K

— Contractor share: $514K
* Funding for FY 2010

— DOE share: $350K

— Contractor share: $227K
* Funding for FY 2011

— DOE share: $314K (est)

— Contractor share: $152K (est)

Overview

Barriers
Barriers addressed:

— System weight and volume

— System cost

— Charging/discharging rates

— Thermal management

— Lack of understanding of hydrogen
physisorption and chemisorption

Partners
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* S. Roszak—Wroclaw U. Technology, Poland
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Objectives & Relevance

Overall

» Fabricate high-surface-area, multiply surface-functionalized nanoporous carbon, from corncob and
other precursors, for reversible H, storage (physisorption) with superior storage capacity

» Characterize materials & demonstrate storage performance

1) Determine pore-space architecture, nature of functionalized sites, H, sorption isotherms (1-200 bar),
isosteric heats, and kinetics, at 77-300 K

2) Establish effectiveness of boron functionalization by deposition and pyrolysis of (i) decaborane
(B1gH44) and (ii) BCl; (May/2010-March/2011)

3) Establish B-C bonds in B-functionalized materials (May/2010-March/2011)
4) Establish enhanced adsorption of H, on B-functionalized carbon (May/2010-March/2011)
5) Use inelastic neutron scattering to probe sub-nm pores (May/2010-March/2011)

6) Validate isosteric heats obtained from adsorption isotherms by direct microcalorimetry (May/2010-
March/2011)

7) Develop computational predictions of the effect of graphene edges on H, adsorption (May/2010-
March/2011)

» Optimize pore architecture and composition

1) Establish optimal precursors for H, storage as function of KOH:C ratio and activation temperature
(May/2010-March/2011)

2) Compare B-functionalized carbons produced by different synthetic methods

3) Fabricate monoliths of optimized B-functionalized carbons; determine storage capacities and
charge/discharge kinetics under conditions comparable to an on-board H, tank



Approach—I|

Raise binding energy of H, on carbon by functionalization of surface with B/Li/... s

— Binding energy of H, on graphite: 5 kJ/mol

— Binding energy of H, on B-substituted carboml\
(electron donation from H, to electron-deficient B;
computations Firlej et al., 2009; Kuchta et al., 2010)

— Increase in binding energy extends far beyond (~ 0.7 nm)
immediate neighborhood of B-atom

— Computed H, ads. isotherms (GCMC) on B:C = 10 wt% P
predict (Firlej et al., 2009; Kuchta et al., 2010):

H,:adsorbent = 5 wt% at room temp. and 100 bar,
H,:adsorbent = 12 wt% at liq. N, temp. and 100 bar E TN T

-600

distance Las
from surface [A]

U. Missouri: (1) Produce high-surface-area carbon (~ 3000 m?/g), (2) Dope surface with B (> 2000 m?/qg)
Other groups: (1) Pyrolyze C-B copolymers or synthesize B-substituted carbon scaffolds bottom-up;

(2) Maximize surface area (~ 900 m2g)

— Reach all surface by using volatile boron carrier

— Deposit boron by physical vapor deposition & thermolysis of B,yH 4

— Deposit boron by chemical vapor deposition of BCl; (~ 900 °C);
BCl, reactant for synthesis of BC;, a candidate for H, intercalation
(Cooper et al., 2009, 2010)

— Incorporate B into carbon lattice by thermal annealing

Create nanopores (closely spaced stacks of graphene sheets)

In narrow pores (<1 nm), adsorption potentials overlap and create deep energy wells, with binding

energy up to 2 times of that in wide pores:

— Binding energy in 0.7-nm boron-free pore: ~ 9 kd/mol

— Binding energy in 0.7-nm B-doped pore: ~ 18-27 kJ/mol A



Approach—II

Increase surface area of carbon beyond 3000 m?/g (large single graphene sheet)
— Use B-substituted carbon to create additional surface area by boron neutron capture (BNC);
fission into Li and alpha particle,

108 + 1n — ["B] —> 7Li + *He +y + 2.4 MeV I el W

(U. Missouri Research Reactor); and etching of fission tracks Xg:’ % ;

Physical realization of Chae et al. (2004): “excision of 6-membered rings”
For BNC: optimum track width ~ 1 nm \ﬁ
For BNC: max. surf. area ~ 6000 m?/g 3
— Chemical realization of “excision of 6-membered rings” by KOH activation
with large KOH:C ratio: small graphene sheets with large ratio of edge sites
to in-plane sites

Simulate H, adsorption (GCMC) on non-traditional surface geometries (edge sites,

pore walls punctured by tranverse channels, ...)

— Objective 1: Extract pore widths and binding energies from exp. H, isotherms LAALLS

— Objective 2: Identify conditions under which multilayer adsorption is significant

— Objective 3: Identify contributions to H, adsorption from in-plane sites and edge sites

— Objective 4: Determine film volume for correct determination of isosteric heat from
Clausius-Clapeyron equation (Olsen et al, 2011)

— Objective 5: Determine density of saturated film, pg,(T), as function of temp. and surface geometry;
compare with exp. densities; find surface geometries/chemistries that give high py;,(T) and Eg

Manufacture monoliths of B-doped carbon for conformable, lightweight tank
— Minimizes wide pores; minimizes tank volume

— Low pressure, 100 bar, enables conformable tank design

— High binding energy, 15 kd/mol, enables storage at room temp.



Approach—IIl: Tasks (revised)

Task Progress Notes % Comp

1. Fabricate functionalized carbons

Fabricate B-doped materials by vapor deposition & thermolysis of Production in Oj-free environment achieved. Samples characterized. 70%

decaborane Increase in excess adsorption observed. Pending: chemical pathways and
optimization

Fabricate B-doped materials by vapor deposition & thermolysis of Production with B:C = 2 wt% achieved. Pending: sample characterization; | 30%

BCl; chemical pathways; optimization

Creation of fission tracks by boron neutron capture (BNC) Fission tracks created at U. Missour1 Research Reactor 80%

Creation of new surface area by etching of fission tracks Etching of fission tracks performed with hydrogen peroxide. Gave no 70%
mcrease 1n surface area. Pending: igh-T steam oxidation (on hold)

Manufacturing of monoliths Boron-free monoliths manufactured and tested. Gravim. storage capacity 50%
comparable to best powders. Volum. capacity better than powders

2. Fabricate hybrid materials No longer under consideration (HSCoE assessment of spillover effect not 0%
conclusive)

3. Characterize and optimize materials/H; storage performance

Map pore space by SAXS, N, adsorption, H, 1sotherms, SEM/TEM, |SAXS methodology complete, new sample characterization via SAXS now | 75%
standard (shape, width, length, wall thickness, porosity), applied to
numerous samples. N; BET and PSD routine. Incoherent inelastic neutron
scattering theory and experiments. FTIR observation of B-C bonds

Predict H; isotherms in pure-C and B-substituted materials, and GCMC and MD simulations of H; isotherms in good agreement with 75%

compare with experimental isotherms. experiments. QC computations of H, binding energies for B-doped C.
Significance of edge adsorption determined

Measure H; binding energies from adsorption 1sotherms and \Highest excess adsorption for B-doped sample produced under O,-free 70%

microcalorimetry conditions. Developed method for isosteric heat determination at high and
low coverage. Validated by microcalorimetric measurements

Compare different methods of B functionalization \Best result (highest excess adsorption) achieved on sample B-doped with 70%
decaborane under Op-free conditions

Optimize gravimetric & volumetric storage capacities Analyzed performance of compacted powders under mechanical pressure 80%
vs. monoliths. Compacted powders not competitive

Design test vessel for monoliths Not started, as directed by DOE Program Management. Test vessel for 100%
operation at room temp. & O,-conditions exists from another project

4. Characterize and optimize monoliths

Construct test vessel for monoliths Not started, as directed by DOE Program Management. Test vessel for 100%
operation at room temp. & Oy-conditions exists from another project

Instrument for B-doping of monoliths with decaborane Design complete. Pending: construction and deployment 30%

Validate and optimize B-doped monoliths Not started, as directed by DOE Program Management 0%




Technical Accomplishments — Summary of 2010 AMR

Validation of H, isotherms in independent labs (MU, NREL, “Blind”):
reproducibility ~ 5%

B-doping & neutron irradiation, fission tracks
B-doping raised average binding energy to 9-11 kJ/mol (B:C = 1.4 wt%)

Found unexpected variations of exp. saturated-film densities and
pressure at which excess adsorption has local maximum

Theory of isosteric heats at all coverages: concluded that absolute
adsorption must be used.

Ab initio + GCMC results for B-substituted carbon
Excess adsorption at 80 K and 303 K for a large “library” of samples

Structural characterization of samples: SAXS & TEM
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Technical Accomplishments 1 - B,,H,,~-doped materials (O,-free)
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Conclusions:
« Achieved B:C = 10% (Method I), but at a cost of some pore blockage (surface area ~ 2000 m?/g).
* For B:C =10 wt% w/o blocking, it is necessary to apply Method Ill multiple times.
+ Apparatus for automated doping with B,,H,, under construction (MRI).




Technical Accomplishments 1 - B, H,,~-doped materials (contd.)
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Conclusions:

* For B:C = 8.6 wt%: areal excess adsorption at 303 K & 200 bar 30% higher than on undoped material

* Increase in areal excess adsorption at high T & P indicates increase in average binding energy, not just highest binding
energy (increased binding energy in large pores, consistent with liquid B,,H,, doping). Increase not observed at 90 K
because unblocked pores in undoped material support H, multilayers, not available in doped material 9

+ O,-free conditions crucial for increased ads. on B-doped sample (no increase observed with O,; 2010 Report)




Technical Accomplishments 2 — Optimization of Pore Geometry, Undoped Samples

= Ground corncob 1s soaked with phosphoric acid and charred at 480°C under
nitrogen. ;
= The activation mechanism by potassium hydroxide is a complicated process TS
and consists of several simultaneous/consecutive chemical reactions. g “

2KOH — K70+ HyO (dehydration) Corncob
, Above 700°C
C+ H,O— CO + Hy (water — gas reaction) K0 + Hy — 2K + Hy,O (reduction by hydrogen
CO+ H,0 — COy+ H,y (water — gas shift reaction) [ i|
KO+ C—=2K+CO duction b b
COy 4 K50 — K3,COs (carbonate formation) 20 =2l (reduction. by carbon)

Consumption of carbon by oxygen producing
/ carbon monoxide and carbon dioxide

Activation
mechanism \ * Penetration of metallic potassium into the

graphitic lattice
» Expansion of the lattice by the intercalated

potassium
» Rapid removal of the intercalate from the

carbon sheet

Pore structure 1s controlled by two fabrication parameters

1. Activation temperature
2. KOH:C weight ratio

10



Technical Accomplishments 2 — Optimization of Pore Geometry, Undoped Samples (contd.)

Optimization of precursor pore geometry: activation agent concentration and activation temperature
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Conclusions:

* High KOH:C ratio and high T lead to larger pore
volumes, larger porosity, larger surface area

p orosity

* But narrow pores are lost at high KOH:C and T

*  Model for low KOH:C and T: Large graphene sheets,
closely stacked

* Model for high KOH:C and T: Small graphene sheets,
losely stacked (precursor of > 3000 m?/g)

+ Optimal for H, storage? See next pages
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Technical Accomplishments 2 — Optimization of Pore Geometry, Undoped Samples (contd.)

: Small-angle x-ray scattering (SAXS) intensity as a
f §E §§§§ : function of the scattering vector, g, for samples
3K 1000 : 3K-700°C, 3K-790°C, 3K-900°C, and 3K-1000°C, and
s AX-21/MSC-30. Increasing temperature causes an
increase of the power-law slope measured at g = 0.2 A-.
A horizontal plateau in this region of the scattering curve
signals the presence of well-defined nanopores. The
increase in the power-law slope indicates the destruction
of this network.

4
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Conclusions:

+ Optimized gravim. excess adsorption for undoped carbons (table next page): Sample 3.5K 800 C consistently
outperforms others; ideal balance between large cumulative pore volume and existence of narrow pores.




Technical Accomplishments 2 — Optimization of Pore Geometry, Undoped Samples (contd.)

Sample Iy, (M?lg) @y, Grav. Exc. Ads. Grav. Exc. Ads. Grav. Exc. Ads.
100 bar, 303 K 100 bar, 194 K 100 bar, 80 K

(wt. %) (9/kg) (9/kg)

2.5K 800 °C 1900 0.69 0.53 1.62 N/A
3K 700 °C 2200 0.65 0.67 2.01 N/A
3K 800 °C 2200 0.78 0.74 2.12 4.47
3K 900 °C 2500 0.78 0.82 2.28 4.68
3K 1000 °C 2000 0.78 0.60 1.80 4.05
3.5K 700 °C 2000 0.70 0.63 1.85 4.42
3.5K 800 °C 2500 0.75 0.84 2.18 5.15
3.5K 900 °C 2500 0.78 0.70 2.14 5.18
4K 800 °C 2600 0.81 0.56 N/A 5.02
5K 790 °C 3200 0.81 0.65 N/A 4.03

Summary of undoped carbons. Gravimetric excess adsorption at 100 bar. Best
performances are highlighted in yellow.
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Technical Accomplishments 3 — Powders vs. Monoliths (Briquettes)

From nitrogen isotherms Macroscopic measurements

Intragranular  |Intragranular| Bulk density BET surface

density (g/em?) | porosity (g/em?) Bulk porosity| ~ - (m%/g) | Powdered activated carbon is

pressed into briquettes at
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Technical Accomplishments 3 — Powders vs. Monoliths (contd.)

Validation between HTF and HIDEN
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Technical Accomplishments 3 — Powders vs. Monoliths (contd.)

Room Temp.

BET Room Temp.
Intragranular Grav. Excess Room Temp. Vol.
surface . Intragranular . Grav. Storage
Sample density : Adsorption (100 . Storage (100 bar)
area 3 porosity Capacity (100 bar)
(m2/g) (g/cm?3) bar) (g/kg) (g/L)
(9/kg)
2.5K powder 1900 0.62 0.69 53 13.2 8.2
3K powder 2600 0.44 0.78 9.3 21.8 9.6
4K powder 2600 0.38 0.81 5.6 20.6 7.8
MSC-30 2600 0.42 0.79 7.2 23.0 8.8
2.5K Briquette (30% binder) 2000 0.74 0.63 6.7 13.9 9.7
3K Briquette (25% binder) 1900 0.56 0.72 7.5 20.2 9.5
4K Briquette (25% binder) 2100 0.53 0.74 8.6 25.7 9.5

Conclusions:

« Carbon made from PVDC improves hydrogen uptake at room temperature (HS;0B, 2010 Report). [measurements
on 0.5-liter HTF validated on Hiden HTP-1 instrument]

* Briquettes outperform most powder samples in terms of volumetric storage capacity because low porosity gives
high volumetric storage capacity. 2.5K briquette has only sub-nm pores and gives highest volumetric storage
capacity, 9.7 g H,/liter C at 300 K & 100 bar

« All briquettes outperform MSC-30 at room temperature in terms of volumetric storage capacity and areal excess
adsorption. 4K briquette outperforms MSC-30 in terms of gravimetric storage capacity

* The performance of several briquettes is explained by the pore size distribution (previous slide)

+ Large samples, on 0.5-liter HTF, lead to less dependence on sample inhomogeneity

* 10-liter tank: will permit studies of flow rates, thermal management, and operation at dry ice temperature (194 K)

16




Technical Accomplishments 4 — Isosteric Heat Measurements

“Best methods” for determination of isosteric heats: experimental determination of film thickness

absolute adsorption: avoid
unphysical rise of Ah

'MSC-30

sample type I(A) mJz (ug/ Ah (kJ/
m?2) mol)

MSC-30 AC 5.4 19.6 6.0-3.0

8

AN

Isosteric Heat (kd/mol)

3K AC 5.1 21.0 6.2-3.6
HS;0B PVDC 5.3 52.8 7.2-1.6
Li+Wu(2009) Zeolite NaX 29.3 4.1-?

[e2]

»H o

(8]

Saha (2008) MOF-177 33.6 4.0-0.5
Saha (2009) MOF-5 28.1 2.6-2.1

Isosteric Heat (kJ/mol)

n
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Microcalorimetry (77 K) — collaboration with U. Marseille Isosteric Heat (kJ/mol)

——NISC-30, CC Eq 80190 K
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== HS,08, CC Eq, 80/90 K
e 3K - calorimetry 77 K, my calc
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g
® S o

)

Gravimetric Excess (g/kg)

—&—MSC-30, 80 K
——3K,80K

—e—HS;0B, 80 K

===3K - low pressure, 77 K
===HS;0B - low pressure, 77 K ||
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0.5 R

L | L L L | L L
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
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Conclusions:

Thermodynamic requirement dAh/om,,, < 0 gives lower bound for film thickness | (exp. film thickness,
agrees well with simulations)

Isosteric heats from Clausius-Clapeyron in good agreement with microcalorimetric values
Ah from absolute adsorption isotherms works to high P (coverage), microcalorimetry only up to 0.5 bar




Conventional FTIR method cannot recognize the difference
of 3K, 3H30, and 3K-H31 at 1020 cm of B-C bond.
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Technical Accomplishments 5 — Observation of B-C bonds by FT-IR
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Conclusions:

FTIR observation of line at 1022 cm-! characteristic of B-C bonds

First time that the existence of B-C bonds in boron-doped carbons (vapor deposition) has been observed




Technical Accomplishments 6 — Incoherent Inelastic Neutron Scattering (IINS)

Theory: sub-nm characterization of pores G0
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Conclusions:

* 1INS is capable of probing both energy levels and quantum states of adsorbed H, directly.

« Experimentally observed 15t rotational transition (E, — E,) at 14.7 meV and roto-vibrational peak at 29.5 meV
(combination of rotational transition and quantum levels in adsorption potential).

+ Shows potential for sub-nm pore characterization (alternative to N,, NMR, ...)

19

* Broadening of peaks: in-plane recoil + coupling to phonon modes (still needs analysis)




Technical Accomplishments 7 — GCMC Simulations on Non-Traditional Pore Geometries

Search for (a) best representation of experimental isotherms (pore structure &
energetics from H, ads.); (b) pore structures with max. H, storage capacity

Input: 1. Pore size distribution
2. Pore shape & lateral dimensions
3. Adsorption (binding) energy

Infinite slit pores, with 2 widths & 2 energies:
0. Slit pore of width H between 2 hexagons of side length 11 A:
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Conclusions:

+ Simultaneous fit of excess ads. & gravim. storage cap. (left panels) constrains pore widths & energies effectively
* In finite slit pore, edge ads. = in-plane ads.; doubles gravim. storage cap. relative to infinite pore (right panels)
Reason: at edge, there is a large region where ads. Is weaker than in slit, but strong enough to hold H, significantly
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Collaborations

* Midwest Research Institute (Private Sector): Subcontractor for design and construction of instrument for
large-scale, automated B-doping (B-doped monoliths)

* NREL (Federal): Validation of H, uptake data. [L. Simpson, P. Parilla, K. O’'Neill]

* Advanced Photon Source/ANL (Federal): Collaboration with J. llavsky for Ultra-small-angle x-ray
scattering studies of samples under General User Program (GUP-10069, GUP-20661).

* NIST (Federal): Collaboration with Y. Liu, G. Brown, and J. Burress on small-angle neutron scattering
experiments on samples loaded with H,, including density correlations of nonadsorbed H,.

* U. Montpellier Il and U. Marseille, France (Academic): Collaboration with L. Firlej and B. Kuchta to
perform GCMC simulations.

* Wroclaw U. Technology, Poland (Academic): Collaboration with S. Roszak for adsorption potentials for
H, sorption on B-doped materials from ab initio quantum-chemical computations.

* ORNL (Federal): Collaboration with M. Stone, use of beamtime for incoherent inelastic neutron scattering
off H, adsorbed in nanoporous carbon.

» U. Provence, France (Academic): Collaboration with P. LIewellyn for microcalorimetric determination of
isosteric heat of adsorption (H, adsorbed in nanoporous carbon).

* U. Missouri (Academic): Collaboration with P. Yu to perform FTIR experiments on B-doped carbon.
Collaboration with H. Taub to analyze IINS experiments.
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Future Work: Plans for 2011/12

» Materials development and characterization:

Continue production of B-doped samples (B,,H;,) under O,-free conditions; investigate chemical
pathways during pyrolysis of B,,H,, and annealing (mass spectroscopy of decomposition products)
and effects on H, storage; optimize pathway of vapor/liquid deposition of B,,H,, based on phase
diagram of B,yH,,; raise surface area of doped samples by removal of B via high-temperature
reaction with H,; optimize annealing

Measure FTIR spectra of B-doped samples systematically; find number of B-C bonds per surface
area

Characterize B-doped materials produced from BCI; and compare with B-doping from B,yH,4

Determine isosteric heats of B-doped samples at low/high coverage and low/high temperature from
corresponding isotherms (Clausius-Clapeyron; Henry’s law). Infer distribution of binding energies
from analysis (highest/lowest/average binding energy)

Determine experimental film thicknesses/densities from Clausius-Clapeyron and compare with values
for saturated films, p;,(T), from high-pressure excess adsorption isotherms (2010 Report), and with
values from numerical simulations

» Continue development of IINS, SAXS/USAXS, TEM/SEM methods for characterization of nanopores

» Continue numerical simulations to investigate edge adsorption vs. in-plane adsorption in finite slit pores,
and compare results with experimental results on carbons activated at high KOH:C and high T. Continue
simulations to determine pore structures and energetics from experimental H, isotherms

+ Complete automated B-doping instrument (MRI); use for vapor deposition of B,y,H,, for B:C = 10 wt%

« Manufacture B-doped monoliths; test in 0.5-liter HTF and 10 liter tank; study flow rate (loading/unloading)
and thermal management issues.
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Project Summary

* Manufactured B-substituted carbon under O,-free conditions by thermolysis of B,,H,,, with B:C =
7-10 wt%, without compromising high surface areas (= 2000 m2/g)

* Demonstrated that B:C = 8.6 wt% raises areal excess adsorption (independent of surface area)
at 303 K and 200 bar by 30% relative to undoped material. Indicates increase in average binding
energy, not solely highest binding energy

» Optimized pore geometry of undoped carbons. Determined that low KOH:C and T give large,
closely stacked “graphene sheets”; and high KOH:C and T give small, loosely stacked “sheets”.
Optimum geometry: KOH:C = 3.5 and T = 800 °C; best balance between large fraction of narrow
pores and large cumulative pore volume

» Compared monoliths vs. powders (undoped). All briquettes outperform MSC-30 at 300 K in
terms of areal excess adsorption (~ average binding energy) and volumetric storage capacity.
Best monolith gave 10 g H,/liter C at 300 K & 100 bar

* Developed method to determine experimental thicknesses of H, films from Clausius-Clapeyron
analysis of absolute adsorption isotherms. Agree well with simulations. Validated isosteric heats
from absolute adsorption isotherms by microcalorimetric measurements.

« Established existence of B-C bonds in B-doped carbons, made from B,,H,,, using FTIR
spectroscopy.

» Conducted inelastic neutron scattering experiment to observe rotational-vibrational transition in
H, adsorbed in sub-nm carbon pores. Proof-of-concept for sub-nm pore characterization.

* In simulations of H, adsorption in finite slit pores, found large contributions from edge sites: edge
adsorption comparable to in-plane adsorption; doubles gravimetric storage capacity relative to
infinite pores
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