A Joint Theory and Experimental Project in the Synthesis and Testing of Porous COFs/ZIFs for On-Board Vehicular Hydrogen Storage

Omar M. Yaghi

Department of Chemistry
Center for Reticular Chemistry
UCLA

May 12, 2011

Project ID
ST022

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

Timeline

Project start date: 9/1/2008 (funded from 4/1/2009)
Project end date: 1/31/2013
Percent complete: 35%

Barriers

Barriers addressed
- Improved gravimetric and volumetric density of hydrogen uptake
- Hydrogen capacity and fast kinetics at 77 K
- Improved hydrogen binding energy
- Synthetic scale up of COFs to cubic meters

Budget

- Total project funding
 - DOE share: $1.38 M
 - Contractor share: $0.41 M
- Funding received in FY10: $300 K
- Funding for FY11: $284 K

Collaborating Partner

- Fraser Stoddart (NW)
- Jaheon Kim (Soongsil University)
- BASF
Description of new materials

Covalent Organic and Zeolitic Imidazolate Frameworks (COFs and ZIFs)
- Control of structure, topology, and interpenetration
- Lightweight materials (COFs)
- Design of functionalities
- Suitable for light metal impregnation
- High-throughput material discovery is applicable
High-pressure H_2 isotherms of COFs at 77 K

H_2 uptake in 3D COFs is almost the same as that in MOF-177.
Objectives (FY10-11)

Accomplishments in last year:
- Predicted adsorption enthalpy of H₂ on various metal sites
- Began computation of H₂ uptake isotherms with developed Force Field
- Develop chemistry to realize stable frameworks
- Introduce potential metal binding sites through the COF synthesis

This year:
- Design new COFs with strong H₂ binding sites
- Predict H₂ uptake isotherm for designed frameworks with developed Force Field
- Prepare stable frameworks with potential metal binding sites
- Implement metalation experiments and evaluate the H₂ adsorption property
- Prepare mixed-metal ZIFs
Milestones (FY11)

1. Discover new COFs with potential metal binding sites and explore \(H_2 \) uptake properties of COFs.

2. Investigate pressure and temperature dependence of \(H_2 \) uptake in metalated COFs over the parameter range specified in DOE YR2015 guidelines (5.5 wt % and 40 g L\(^{-1}\) up to 100 bar, -40/85 \(^\circ\) C). Compare with predictions from theory.

3. Develop new force fields for modeling adsorption properties of COFs. Test models using reported adsorption data for a range of known COFs.

4. Design new architectures of promising materials for hydrogen storage that are favorable thermodynamically.
Strategy

- Improve the framework stability against impurity (e.g. water)
- Introduce metal binding sites through the COF formation

COF-5
COF-1
COF-202
COF-300

COF-41
COF-301
Postmodified MOF (JACS, 2009)
Hydrazone condensation

- Obtained hydrazone chemically stable in water and basic conditions.
- Polyacylhydrazones have been prepared showing monomer exchange under mild conditions.
- Potential metal binding sites

Last year, we prepared hydrazone COF (COF-41)
- Crystalline porous solid
- Stable in air
- BET surface area was 110 m²/g
Synthesis of COFs based on hydrazone linkages

COF-42

1. Reaction of components 1 and 2 in mesitylene/dioxane/acetic acid 6 M (aq) (15:5:2 v/v/v) at 120 °C for 72 h.

COF-43

2. Reaction of components 1 and 3 in mesitylene/dioxane/acetic acid 6 M (aq) (9:1:1 v/v/v) at 120 °C for 72 h.
PXRD patterns of COF-42 and 43

[Graph showing PXRD patterns for COF-42 and COF-43 with peaks labeled 100, 110, 200, 210, 220, 340, 003, and 001.]
Ar isotherms of COF-42 and COF-43

COF-42 shows 6.5 times higher BET area than COF-41.
H₂ isotherms of COF-42 and COF-43

<table>
<thead>
<tr>
<th></th>
<th>BET SA (m²/g)</th>
<th>H₂ uptake (wt%)</th>
<th>(Q_{st}) (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>COF-41*</td>
<td>110</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>COF-42</td>
<td>710</td>
<td>0.60</td>
<td>6.6</td>
</tr>
<tr>
<td>COF-43</td>
<td>620</td>
<td>0.51</td>
<td>6.6</td>
</tr>
</tbody>
</table>

Reported last year

Excess uptake

COF-42, 77 K
COF-43, 77 K
COF-42, 87 K
COF-43, 87 K
Calculated ΔG and ΔH of metalation reactions

From the calculation, each linker can hold atomic Pd except the hydrozone.

\Rightarrow Design of imine-linked COFs
Design of imine-linked 3D porous COFs

COF-300:
- Permanently porous (BET SA = 1360 m2/g, pore volume = 0.72 cm3/g)
- 1.1 wt% H$_2$ uptake at 1 bar and 77 K
- However, no metal binding sites in the framework

Use terephthaldehyde derivatives to introduce metal binding sites
Synthesis of COF-301 and metalation

- Crystalline COF-301 was synthesized
- The formation of imine linkages in COF-301 was confirmed by FT-IR spectra
- Crystallinity remains after the metalation
N₂ and H₂ uptake by COF-301 and metalated COFs

<table>
<thead>
<tr>
<th></th>
<th>Metal salt</th>
<th>BET SA (m²/g)</th>
<th>H₂ uptake at 1 bar and 77 K (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>COF-301</td>
<td>n/a</td>
<td>840</td>
<td>1.0</td>
</tr>
<tr>
<td>COF-301-Pd</td>
<td>PdCl₂</td>
<td>60</td>
<td>0.5</td>
</tr>
<tr>
<td>COF-301-Pt</td>
<td>PtCl₂</td>
<td>20</td>
<td>0.2</td>
</tr>
</tbody>
</table>
New COFs replete with metal binding sites

- All starting materials are in hand.
- Synthesis of these COFs has started.
Approach #1: Hexaazatriphenylene COFs

- Compound 3 was prepared.
- Studying COF synthesis condition of 3 with 2, 4, or 5.
Proposed target structure #1
TPymT-COF-PdCl

The calculation of the isotherm is underway.
Proposed target structure #2

HAT-COF-PdCl₂

The calculation of the isotherm is underway.
Proposed target structure #3
CpFe-COF

View 1
View 2
CpFe
CpFe-COF
Configuration 3
Configuration 5
CpFe-H₂

The calculation of the isotherm is underway.
Ideal ΔH for maximized delivery amount of H_2

- Langmuir model was used for the generalization.
- $\Delta H = 20$ kJ/mol is the optimal value to maximize the delivery amount between 5 and 100 bar.
Approach #2: Optimization of metal loading

- Simulated data indicate that delivery amount of H_2 (total, 298 K) can be maximized by either partial metalation or mixed metal impregnation.
- Implement calculations on other COFs (e.g. COF-301, COF-42) to optimize delivery amount of H_2.
- Study the effects of mixed metal impregnation to control the Q_{st} profile.
- Based on the prediction, metalation experiments will be performed.
Summary

Relevance: For room temperature hydrogen storage, a systematic survey was started experimentally as well as theoretically.

Approach: Aim at increasing strong binding sites for maximum hydrogen uptake capacity without losing pore volume.

Technical accomplishments and progress:
- Synthesized new COFs through hydrazone and imine condensation
- Began metalation experiments of COFs
- Began synthesis of mixed-metal ZIFs for improved adsorption enthalpy
- Found linkers with optimal binding energy for H₂ storage (20 kJ/mol)
- Designed new architectures with these linkers and began simulation calculations of H₂ uptake

Technology transfer/collaborations: Active relationship with collaboration partners (organic synthesis and material design) and BASF (verification of the data).

Proposed future research:
- Prepare COFs with metal binding sites and optimize the activation condition
- Employ metals to create strong binding sites and experimentally evaluate the Q_{st}
- Predict H₂ isotherms for modeled compounds with metals
- Study plausible route to synthesize the modeled compounds based on the thermodynamics
- Calculate the diffusion coefficient to estimate the kinetic factor with new force field