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Overview
Timeline

• Project start date: FY05
• Project end date: Continuing

Budget
• Funding received in FY10

– $800K (DOE)
• Planned Funding for FY11

–$200K (DOE)

Barriers
MYPP Section 3.3.4.2.1 On-Board 
Storage Barriers 

A. Weight & Volume
B. Cost
C. Efficiency
D. Durability/Operability
E. Charge/Discharge Rates
R. Regeneration Processes

Partners and Collaborators
• UH-UNB, ORNL, SRNL, SNL
• Other collaborations: JPL, UIUC, ANL
• Chemical Hydride Groups: LANL, PNNL
• International Energy Agency (IEA)
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Relevance: AlH3

Challenge: AlH3 not “on-board” reversible 
and decomposition cannot be controlled 
by H2 overpressure 

today’s vehicle systems

AlH3AlH3

AlH3AlH3(with 50% system penalties)(with 50% system penalties)

AlH3AlH3

– High capacity: 10.1 wt% and 149 g/L
– Low decomposition enthalpy:

∆H ≈ 7 kJ/mol H2 (≈ 1/5 ∆HNaAlH4)

– Rapid H2 evolution rates at low T
Meets DOE target (0.02 gH2/s) at <100°C 

before after

– Decomposition rates can be tuned 
through particle coatings
– High purity H2 - AlH3 decomposes to 
Al and H2 (no side reactions)



Approach
Objective: Meet DOE technical performance targets using kinetically 
stabilized aluminum-based hydrides (e.g. LiAlH4 and AlH3). Assist the 
engineering design for an off-board system based on a kinetically 
stabilized hydride.

Challenge: Hydrides are thermodynamically unstable at 300K
1. System: How do we control the H2 evolution? How will a 

pumpable slurry impact H2 rates and capacity? Can we tailor 
hydride properties by altering synthesis conditions?

2. Regeneration: How do we reform these hydrides from the spent 
material using a low cost and low energy process?

– Controlling H2 evolution rates with temperature
– Effect of catalysts and slurry media on H2 rates
– Preparation of µm-sized AlH3
– Rate comparison of AlH3 powder (nm vs. µm); slurry, and 
catalyzed slurries
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AlH3 decomposition rates
α-AlH3 + Ti

Unstable - spontaneous 
decomposition; reactive in air  

Very Stable - no spontaneous 
decomposition; stable in air  
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H2 Release Rates and Thermal Cycling

• Decomposition kinetics governed by nucleation and growth of Al 
with induction (nucleation) and acceleratory (growth) regions

• H2 release goes to zero as temperature goes to 25ºC (On/Off) and 
rate returns to where it was (before T drop) --> Rate determined 
by level of decomposition



7

Decomposition isotherms of catalyzed AlH3

• AlH3 shows enhanced desorption with 10 ppm Ti 
• AlH3 is completely unstable at Ti concentrations >= 0.1 mol%

Euncatalyzed = 97 kJ/mol
Ecatalyzed = 83 kJ/mol 

R = k0exp[-E/RT]
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Decomposition rates for AlH3 slurry

Isothermal decomposition: (i) pure (dry) α-AlH3
(ii) α-AlH3 (60 wt%) in ethylene glycol dibutyl ether (Dibutoxyethane)
(iii) α-AlH3 (60 wt%) in C10H22O2 with 0.03 mol % Ti as {Ti(OB)4}



9

Decomposition Rates of α-AlH3

Target for 
50 kW FC

*based on 100kg AlH3

*
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3LiAlH4 + AlCl3 + ether → 3LiCl↓ + 4AlH3•1.2[(C2H5)2O] + ether

dry under 
vacuum 70°C 

with LiAlH4

Microcrystallization Reaction

4 hrs

100 - 200 nm α-AlH3

F. Brower, et al., JACS, 98 2450 (1976).
J. Graetz, et al., J. Phys. Chem. B, 109 22181 (2005)

α-AlH3 (Dow) 50-100µm

Batch/Continuous Reactions

Filter

Desolvation

• Continuous reaction: desolvation occurs in benzene (or toluene) 
using a crystallization flask equipped with a fractionation column.
• Ethereal AlH3 solution (w/ LiAlH4 + LiBH4) is added continuously to 
benzene (or toluene) at ~77ºC to distill off Et2O and precipitate AlH3.

Scaling up and increasing crystallite size
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Buchi Rotary Evaporator
Solvent at Temp 80-85 C

AlH3:ET2O
feedstock

(0, -10) C
condenser

Pressure
(~50 kPa)

Lq N2

Cryo-Pump Solvent
Reflux

Lq ET2O

Setup for batch preparation of µm-sized AlH3

Goal: 6-8 wt% H2 slurry with 
viscosities 1000 - 2000 cP

Typical particle size with “dry 
process” 100-150nm,
but we need ~50 µm particles 
for suitable packing/slurry 
densities

First step is same:
AlCl3 + LiAlH4 in Et2O,
but we desolvate in toluene

Last step is dilute acid wash to remove 
impurities and small AlH3 particles
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• Large crystallites (20-40 µm) of α-AlH3 prepared (~1-2 g batch)
> 9.5wt.% H2 after dilute acid wash

• Decomposition rate is much faster than DOW alane material

Preparation of µm-sized particles of AlH3

45 µm



(25-50 µm)

70 µm

Solid markers
25-50µm

25 µm

- Particle size does not significantly affect kinetics – Stability of Dow 
AlH3 likely due to surface coating(s) not crystallite size

*based on 
100kg AlH3

*

- Slurry (60wt% AlH3) shows rapid decomposition rates <100C
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Regeneration of aluminum-based hydrides

Two-step approach to regeneration of Al-based hydrides:
Step I (stabilization): Form stabilized alane or alanate adduct by 
direct hydrogenation of catalyzed Al and stabilizing molecule (e.g. 
amine (TEDA, TMA), ethers (THF, Et2O, Me2O))

Direct hydrongeation requires extremely high pressure - can 
we “regenerate” using a low cost and low energy process?

Step II (separation): Remove stabilizing species and recover 
hydride (alane / alanate)

Metastable hydrides:
AlH3

LiAlH4
Mg(AlH4)2

Stabilizers:

ethers (THF) amines (TEDA)

Partial funding from DOE - Basic Energy Sciences
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Reaction: LiH + Al* + THF + 3/2H2 ↔ LiAlH4-THF

Regeneration of LiAlH4

Reversible hydrogenation of LiH + Al* in THF at low pressure 
(~1 bar) and room temperature (∆G298K = -1.0 kJ/mol H2)

LiAlH4 is considered an “irreversible” complex hydride, but the adduct 
LiAlH4-THF is formed under relatively mild conditions

run in tetrahydrofuran (THF)

∆Gf298K = -1.0 kJ/mol H2

Partial funding from DOE - Basic Energy Sciences



Regeneration of AlH3
Step 1: formation of NR3-AlH3 by direct 
hydrogenation
• Five alane adducts formed by direct 
hydrogenation under mild conditions
• conversion up to 90% (of starting Al)
Step 2: transamination exchange NR3
for TEA
• Transamination demonstrated starting 
with DMEA and TMA 
• conversion >50% (exact value unknown)
Step 3: separation of TEA-AlH3

• Separation of TEA-AlH3 successful 
• >90% AlH3 recovery (<10% Al)
– Well-to-tank efficiency estimates of 40-
55% using this route with TMA (WTT 
target is 70%)



Carbon

Nitrogen

Aluminum

Dimethylethylamine (DMEA) alane:
C4H11N + Al* + 3/2H2 → C4H11N-AlH3

Trimethylamine (TMA) alane:
2C3H9N  + Al* + 3/2H2 → 2C3H9N-AlH3

Step 1: Low pressure AlH3 formation
2C3H9N-AlH3

C4H11N-AlH3

P < 60 bar  T = 300 K

P < 230 bar  T = 300 K

Step 2: Amine exchange (transamination)

DMEA-AlH3 TEA-AlH3

DMEA-AlH3 + 4TEA
T = 50ºC, Pi = 1 bar
Pf = 26 mbar, 4.5 hrs

Partial funding from DOE - Basic Energy Sciences



Step 3: Separation of TEA-AlH3

• TEA-AlH3 successfully separated at 70ºC under vacuum (<100 mbar)
• Analysis of recovered AlH3 suggests >80% AlH3 with <20% Al
• With recent improvements in separation >90% AlH3 (<10% Al)

XRD of recovered product

Partial funding from DOE - Basic Energy Sciences



Summary of accomplishments and future work

• Low cost regeneration remains the critical challenge: Promising 
pathways identified, but we need to improve and optimize process:
Pathway 1: Al + H2 + TMA → AlH3-TMA  → AlH3 - TEA → AlH3

Pathway 2: Al + H2 + DMEA → AlH3-DMEA  → AlH3-TEA → AlH3

TEA

TEA

– How does cycling affect the “activity” of the Ti-Al catalyst? 

– Need to combine steps 1-3 and optimize yield and efficiency and 
continue work with ANL to determine mass balance & energy cost

• Demonstrated thermal control over H2 evolution rates - H2 rate 
determined by level of decomposition

• Slurries of 60wt% AlH3 (40wt% dibutoxyethane) showed enhanced H2
rates compared to dry powder; fastest rates w/ catalyzed AlH3 slurry
– Continue to develop alane slurries and explore use of nonionic 
dispersants: Goal: 6-8 wt% H2 with viscosity 1000-2000 cP

• Preparation of 20-50 µm AlH3 - showed rates similar to 100 nm AlH3
– Improve large particle synthesis and increase batch size
– Work with Engineering Center to develop AlH3 system



Supplemental Slides
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Energy consumption for AlH3 regeneration 
(per kg H2 in AlH3)

• Without using wasted heat, well-to-tank (WTT) efficiency is 40.5%
• Using wasted heat for thermal energy increases WTT to 55%
• Target is 70% - improvements possible by reducing excess H2, TMA 
and TEA, switching to gas flow (rather than vacuum) and using DMEA

(TMA route)

R K Ahluwalia, T Q Hua and J-K Peng

Efficiencies based on 100% conversion during hydrogenation, 75% 
conversion during transamination and 75% recovery from separation.
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Preparation of catalyzed Al
• Ti catalyzed Al (Al*) prepared by first making AlH3 with TiCl3

in ether and then decomposing the ether adduct

Al (low magnification)

100 
nm

Ti (low magnification) Ti (high mag.)

Al (high mag.)

3LiAlH4 + AlCl3 + 0.08TiCl3 3.24LiCl↓ + 4AlH3•Et2O + 0.08TiEt2O

4AlH3•Et2O + 0.08Ti 4Al + 0.08Ti100°C
2 hrs

 grain size = 165 nm; Ti well-dispersed throughout Al

TiAl3
r1 = 2.715, N1 = 4
r2 = 2.877, N2 = 8

Al + 4%Ti
r1 = 2.701, N1 = 3.6
r2 = 2.824, N2 = 7.2

Ti0.02Al0.98

Al + 4%Ti

TiAl3

E (eV)
Partial funding from DOE - Basic Energy Sciences
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Location of Ti after adduct formation

 In initial Al* the Ti is well-dispersed throughout Al
 After hydrogenation Ti concentrated in unreacted Al
 No detectable Ti in recovered solid alane/alanate adducts

Partial funding from DOE - Basic Energy Sciences

Ti necessary for hydrogenation, but Ti destabilizes LiAlH4 and AlH3 and 
must be removed in the final product - where is Ti after hydrogenation?

100 
nm

Ti (high mag.)Al (high mag.)



AlH3 temperature-pressure phase diagram

J. Graetz, J.J. Reilly, V.A. Yartys, J.P. Maehlen, B.M. Bulychev, V.E. Antonov, B.P.Tarasov, I.E. Gabis, Aluminum 
hydride as a hydrogen and energy storage material: past, present and future, JALCOM (2010).
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