Discovery of a New Species in the Hydrogen Chemistry of NaAlH$_4$ by *In Situ* NMR

Tim Ivancic
Eric Sorte
Mark Conradi
Son-Jong Hwang
R.C. Bowman, Jr.
Craig Jensen
Derek Birkmire
Terry Udovic

Washington U. Physics Dept.
Caltech, Chemical Sciences
RCB Hydrides, LLC
U. Of Hawaii, Chemistry
NIST, Center for Neutrons

Work funded by DOE Basic Energy Sciences, Hydrogen Fuel Initiative
This presentation does not contain any proprietary, confidential, or otherwise restricted information.
NaAlH₄ for Reversible Hydrogen Storage

Well known stepwise reaction:
1) $\text{NaAlH}_4 \leftrightarrow \frac{1}{3}\text{Na}_3\text{AlH}_6 + \frac{2}{3}\text{Al} + \text{H}_2$ (3.7 wt %)
2) $\text{Na}_3\text{AlH}_6 \leftrightarrow 3\text{NaH} + \text{Al} + \frac{3}{2}\text{H}_2$ (1.9 wt %)

Steps 1 and 2 found to be reversible with the introduction of Ti catalyst*. This is especially important for re-hydriding.

- Require mobility of Na and/or Al, not just H. (H/D exchange)

 Note: Na:Al ratio changes from 1:1 to 3:1 to 1:0 as one goes NaAlH₄ to Na₃AlH₆ to NaH

- Such mobile Na- or Al-bearing species are likely to be crucial chemical intermediates. While these may provide key understanding of the chemistry, they have yet to be directly detected.

- We report here the discovery of the candidate Al-bearing mobile species.

High-T, High-P *In Situ* NMR Probe

- *In Situ* NMR probe (shown) can presently go to 350°C, 6000 psi Ar (415 bars). 3000 psi H₂ (208 bars).
- Can react NaAlH₄ (doped with a few mol% Sc or Ti) in the pressure vessel while doing 27Al NMR, measuring pressure to monitor the reaction.
- Glass vessel, transparent to RF fields, is weak in tension but strong in compression – so we use high-P argon outside the glass.

Probe Details

- Internally heated
- Water cooling coils
- Ar over-P surrounds all
- H_2 high-P volume small (less than 12 cc)
S105 is new and had not been seen before. It is narrow (so is very mobile) and Al-bearing. This could be our missing species responsible for metal-atom transport! But, S105 does not stick around and allow us to identify it.
• When P is greater than P_{eq}, reaction is forced to left side.
• So at $P=200$ bar=3000 psi, we can prevent the sample “dehydriding away”.
 But will we still see S105? Try it and find out!

How to Generate and Preserve Species-M: Bringing S105 To Ambient Conditions

20°C
3040 psia H₂
(210 bar)

175°C
3020 psia H₂
(208 bar)

12°C
0 psia H₂
(0 bar)

Ready for Shipping!

27Al Spectrum, NaAlH₄ + 4 mol% ScCl₃

S105 remains at ambient conditions, so it can be studied by magic-angle spinning NMR, x-ray diffraction, etc. S105 can be shipped anywhere, as it is stable.

Note: whenever we see S105, it is accompanied by Na₃AlH₆ (but not Al metal).
S105 is Narrowed by Motional Averaging

- S105 is narrow at room-T because of rapid motions.
- Whenever S105 is observed in 27Al, there is also a sharp hydrogen NMR line.
- So this mobile species has Al and H (but no Na – sharp 23Na signal never observed).
Summary

• New species S105 forms under reaction conditions.
 – P,T cycle allows recovery at ambient (doped or bare)
• NMR of S105 says highly mobile, Al$_x$H$_y$.
 – Very short 27Al T$_1$
 – 27Al is motionally narrowed
 – S105 has 15% of 27Al intensity
 – Companion sharp peak in 1H NMR
 – CPMAS at low-T confirms hydrogenated
• 27Al shift very close to NaAlH$_4$.
• Diffraction says highly disordered.

What is Species S105?

- We believe S105 is NaAlH$_4$ with a high vacancy concentration.
- Ozolins et al.* proposed:
 - $\text{AlH}_3^v \rightarrow \text{H}^- + \text{AlH}_4^- = \text{AlH}_5^{-2}$ complexes (hydrogen rich)
 - $\text{NaH}^v \rightarrow \text{AlH}_3 + \text{AlH}_4^- = \text{Al}_2\text{H}_7^-$ complexes (hydrogen deficient)
- AlH$_3$ vacancies would cause rapid diffusion of Al and H in large region.
- Explains naturally:
 - Motional narrowed lines
 - Shift, so similar to NaAlH$_4$
 - Disorder observed in diffraction
 - Large signal from relatively few vacancies
- See Eric Majzoub’s new structure, too.

- Questions:
 - Why not 100% of 27Al in S105?
 - Is this relevant to other complex hydrides (LiBH$_4$)?
 - What chemistry creates S105 + Na$_3$AlH$_6$?

PEGS Method Used to Explore Structural Candidates for S105 Structure

From Eric Majzoub, U Missouri at St. Louis, Physics

First-principles calculated NMR Shifts using VASP in collaboration with G. de Wijs at Radboud University, Netherlands

New High-T Phase Predicted in NaAlH$_4$

- New PEGS candidate
- Predicted to be the most stable phase at 320K
- 27Al shift is calculated to agree with S105
- Lower free energy than Cmcm [Wood et al., PRL, 103, 185901 (2009)]

Heat treated single crystals will be used to look for the S105 phase experimentally.

New PEGS predicted phase has lower free energy above 320K
Hydrogen NMR of Palladium-Hydride: Measuring the Hydride-Gas Exchange Rate

Bob Corey
South Dakota School of Mines and Technology, Physics

Laura Rayhel
David Shane
Mark Conradi
Washington U. Physics Dept.

Don Cowgill
Sandia National Labs, Livermore, CA, Dept. of Hydrogen and Metallurgy Science
Introduction: PdH$_x$ and Hydride-Gas Exchange

Dynamic equilibrium:
Pd + (x/2)H$_2$ \leftrightarrow PdH$_x$

T_1 relaxation:
- T_1 in H$_2$ gas is short (~ms), because of short H-H bond and favorable T_C
- Intrinsic T_1 of H in PdH$_x$ ~200 ms. Comes from Korringa and BPP

Idea: If exchange were rapid enough, apparent T_1 of hydride would be reduced. Could measure the exchange rate from apparent hydride T_1.

Simple case, limit: If T_1^{gas}=0, gas spins always at equilibrium. An H going from PdH$_x$ to gas phase will be replaced by a fully relaxed H from the gas.
H nuclear spins in PdH$_x$ can relax via:
- intrinsic relaxation mechanism, or
- by exchanging with (very rapidly relaxing) gas phase.

- Can use this relaxation to measure rate of palladium-gas exchange (K$_{pg}$).
Summary of all the equations

1. For maximum impact of exchange on hydride phase apparent T_1, want $N_g \gtrsim N_p$. (Need lots of gas around PdH$_x$ powder particles)

2.
\[
\left(\frac{1}{T_1}\right)^{app} = R_1^{app} is \equiv K_{pg},
\]
exchange rate, provided

\[
R_p \lesssim K_{pg} \lesssim R_g \left(\frac{N_g}{N_g+N_p}\right)
\]

or, for $N_g \gg N_p$,

\[
R_p \lesssim K_{pg} \lesssim R_g
\]
Sample Preparation

- Evacuate at 150°C overnight
- At 100°C, add 5 Torr H₂ and evacuate; 8 times
- At room-T, hydride to 0.9 bar and evacuate
- At room-T, hydride to 0.9 bar (and seal).

How to widely disperse Pd/PdHₓ so there is lots of surrounding H₂ gas.

Partially filled Pyrex tubing with Pyrex wool coated with Pd-black a la shake ‘n bake.
Deuterium NMR spectra of PdD\textsubscript{x} and the surrounding D\textsubscript{2} gas at several temperatures. The 22°C spectrum shows that there are about half as many D nuclear spins in the gas as in the deuteride. At -80°C, PdD\textsubscript{x} broadens due to the slowing of the internal motions. At 60°C, the gas resonance is broadened by gas-deuteride exchange; by 100°C, the resonances are partially merged.
Magnetization recoveries as functions of time following spin inversion. Palladium black well-dispersed on glass wool; with 0.9 atm H₂ (circles), 0.02 atm (squares), and after return to 0.9 atm (triangles). At low pressure, the exchange effect is blocked, decreasing the overall apparent rate of relaxation.
Relaxation rate equals that of PdDx (no exchange).

Nuclear spin-lattice relaxation rates R_1 for D_2 gas and for the deuteride resonance, for both 1.0 bar and 0.15 bar of surrounding D_2 gas. With less gas, the exchange enhancement of R_1^{app} is reduced. At 1.0 bar, R_1^{app} of the deuteride is limited at low temperatures by the intrinsic relaxation in the deuteride solid and at high temperatures by the gas phase relaxation, according to eqn. (3). In between, R_1^{app} is approximately equal to the exchange rate K_{pg}. The solid curve is a fit of eqns. (5) and (6) to the data.
Conclusions

• Can measure rate of hydride-gas exchange, to characterize surface quality.

• Exchange is measured at equilibrium.

• Compared to H/D isotope exchange, very fast exchange can be measured with our method.

• Exchange rate and activation energy very similar for PdH$_x$/H$_2$ and PdD$_x$/D$_2$ (0.32 eV).

• Will now study other, non-Pd systems.
NMR investigation of nanoporous γ-Mg(BH$_4$)$_2$

Mitch Eagles
Bo Sun
Mark S. Conradi

Bo Richter
Torben R. Jensen

Yaroslav Filinchuk

Washington U. Physics Dept.
Center for Materials Crystallography, Aarhus University Chemistry Dept.

Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain

γ-Mg(BH$_4$)$_2$ has 33% open volume (!), so we may expect enhanced rate of diffusion (of BH$_4^-$, for example). Diffusion of these species is crucial to dehydriding and rehydriding reactions.
Hydrogen NMR spectra of γ-Mg(BH$_4$)$_2$ at several temperatures. At -75 and -145°C, pronounced broadening is due to slowing of the BH$_4$ reorientations. At and above 22°C, no further narrowing of the main resonance occurs, ruling out rapid BH$_4$ translational diffusion. At the highest temperature, a narrow component appears, reflecting a small fraction of mobile spins, probably from residual solvent.
Hydrogen NMR measurements of T_{1D} in γ-Mg(BH$_4$)$_2$, together with β-phase data from reference Q for comparison. In γ-phase, there is no sharp decrease in T_{1D} at elevated temperatures that would signal thermally activated diffusive hopping with rates 10^2 s^{-1} or faster. Again, no sign of BH$_4^-$ diffusion.

T_{1D} is sensitive to hopping motion too slow to narrow the NMR line.

But again we see no evidence of BH$_4^-$ diffusion.

Hydrogen NMR measurements of T_{1D} in γ-Mg(BH$_4$)$_2$, together with β-phase data from reference Q for comparison. In γ-phase, there is no sharp decrease in T_{1D} at elevated temperatures that would signal thermally activated diffusive hopping with rates 10^2 s^{-1} or faster. Again, no sign of BH$_4^-$ diffusion.
Hydrogen NMR T_1 of Mg(BH$_4$)$_2$. Results are shown (triangles) for γ-phase material from -150 to 175°C; the sharp increase above 150°C (dashed line) shows the transformation to a new structure, TP1. The transformation was completed at 225°C; T_1 of the transformation product TP1 down to -125°C appears (stars). A second sample was transformed to yield TP2 (pentagons). See text for description of temperature cycling histories. For comparison, T_1 of α-phase (squares) and β-phase (circles) is shown.

T_1 is controlled fully by BH$_4^-$ reorientations.

In γ, the activation energy is high, as in α.

In β, the activation energy is low.

TP1=result of γ transforming at 175-200°C
Hydrogen NMR spectra, all at 22°C. Data are presented for γ-phase and β-phase materials, as well as the transformation product TP1, formed from γ by heating to 225°C. Linewidths: γ < TP1 < β
Linewidth reflects density because dipole interactions vary as $1/r^3$.
Conclusions

- Despite the large 33% of vacant space in γ-Mg(BH$_4$)$_2$, there is no sign of BH$_4^-$ diffusion up to 150°C.

- Neither line narrowing nor short T_{1D} is found.

- BH$_4^-$ reorientations have high barrier, like α- and unlike β-phase.

- At approximately 175-200°C, gamma transforms to a denser structure similar to β (from its T_1 behavior and from x-ray diffraction).
NaH is an archetype of ionic hydrides. This study of NaH continues our program (in past, MgH$_2$ and NaMgH$_3$).
As T increases, the fraction of H that is mobile (line narrowed) grows. Fraction of immobile H decreases. In other ionic hydrides, we identified mobile H as those near defects (grain boundaries, for example). Immobile H are in crystallite interiors. Above 250°C, the remaining broad component motionally narrows.

In this ball-milled NaH from Craig Jensen at U. Hawaii, we see only a narrowed component by 160°C.
Even at 300°C, the 23Na line has narrowed by only a factor of 2. This shows: H⁻ hopping averages to zero H-H and H-Na dipole interactions, but not the Na-Na terms. So Na⁺ is not diffusing by 300°C.

In UHawaii ball-milled NaH, Na⁺ diffusion is rapid by about 300°C, as seen by narrow ²³Na line.
Conclusions

• Coarse-grain Aldrich NaH shows a narrow (mobile) fraction of H that grows with temperature, in common with MgH$_2$ and NaMgH$_3$.

• The ball-milled UHawaii NaH is completely narrowed by 160°C, indicating that defects from ball milling increase H mobility.

• Sodium motion does not occur in coarse Aldrich NaH up to 300°C. But Na diffusion is evident in ball-milled UHawaii NaH.