Development of Kilowatt-Scale Coal Fuel Cell Technology

Steven S.C Chuang (PI)
The University of Akron
May 15, 2012

Project ID #
FC070

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

Timeline
- Project start date: 6/01/2008
- Project end date: 05/31/2012
- Percent complete: 90%

Barriers
- Barriers addressed
 - Long term catalyst durability
 - System thermal management

Budget
- Total project funding
 - DOE share: $1,675,800
 - Contractor share: $475,068
- Funding received in FY11: 0
- Funding for FY12: 0

Partners
- Ohio Coal Development Office (OCDO)
- FirstEnergy Corp.
Project Objectives – Relevance

• **Overall**: Develop a Kilowatt-scale coal fuel cell technology. The results of this R&D efforts will provide the technological basis for developing Megawatt scale coal fuel cell technology.

• **2011**
 – Develop a low cost process for the large scale fabrication of fuel cell components by tape casting and screen printing methods.
 – Test the long term durability of fuel cell components

• **2012**
 – Test the effect of operating conditions (Temperature, Voltage load, and concentration of CO, CO₂ and H₂O) on the performance and energy efficiency of the coal fuel cell.
 – Investigate the integration of coal fuel cells in series and parallel stack configurations.
Approach – Milestones (I)

<table>
<thead>
<tr>
<th>Planned Milestone</th>
<th>Progress Notes</th>
<th>Comment</th>
<th>% Comp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investigate the factors governing the anode catalyst activity.</td>
<td>Determined the effect of H(_2)O on the activity of the anode catalyst for electrochemical oxidation of carbon in coal</td>
<td>Addition of 3 wt% H(_2)O to the anode compartment of the coal fuel cell produce current densities as high as 180 mA/cm(^2), representing an 40% performance improvement</td>
<td>90%</td>
</tr>
<tr>
<td>Investigate the nature of carbon fuels on the fuel cell performance</td>
<td>Investigated the reactivity of different carbon fuels by IR spectroscopy and impedance spectroscopy</td>
<td>The fuel cell performance (voltage –current characteristics) were correlated to the –CH and -OH functional groups of the carbon fuel</td>
<td>90%</td>
</tr>
</tbody>
</table>
Approach – Milestones (II)

<table>
<thead>
<tr>
<th>Planned Milestone</th>
<th>Progress Notes</th>
<th>Comment</th>
<th>% Comp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Develop a low cost process for fabrication of large scale fuel cell components</td>
<td>Developed a tape casting/screen printing procedure for the fabrication of low cost and reproducible fuel cells</td>
<td>Screen printing of LSM/YSZ cathodes (60/40 wt%) and firing at 1100 °C improved fuel cell reproducibility, facilitating production of batches as large as 100 units</td>
<td>90%</td>
</tr>
<tr>
<td>Integrate the fuel cell components into a coal fuel cell stack</td>
<td>Evaluated the integration of fuel cells in parallel and series configuration</td>
<td>Integration of the fuel cells in series configuration resulted in expected voltage build-up in coconut coke.</td>
<td>90%</td>
</tr>
<tr>
<td>Evaluate the long term anode and cathode catalyst activity as well as interconnect durability</td>
<td>Investigated the stability of the fuel cell integrated in series configuration</td>
<td>Testing of the fuel cell stack in series configuration in CH₄ fuel revealed high stability up to 100 h of continuous operation.</td>
<td>90%</td>
</tr>
</tbody>
</table>
Coke + H₂O vs. Coke
- Enhanced the power density of coke fuel cell by 80%.
- Reduced polarization resistance by 50%.

Coke + H₂O vs. Coke + 3 Vol% H₂
- 3 Vol% H₂ showed 15% more power density.
- Presence of H₂O reduced polarization resistance by 10%.
Presence of H$_2$O increased the amount of CH$_4$, CO and CO$_2$ production.

Water could produce almost similar current density with 3 Vol% H$_2$.

Water could be a good substitution for H$_2$ in coal based fuel cells due to its similar performance and higher rate of coke gasification reactions.
Maximum current density of the fuel cell operated with coconut coke was 19 % of that with H₂, while Petcoke produced 9 % of that with H₂.

Ohmic resistance and polarization losses of the fuel cell with Petcoke were higher than those with coconut coke.
Coconut coke has more active –CH, -OH surface functional groups and more reactive toward gasification with CO₂ and O₂.

Technical Accomplishment III: Fabrication of large scale fuel cells

Revise fuel cell material selection to improve performance to achieve the milestone of developing low cost process for fabrication of large scale fuel cell components

- **Cathode modification:**
 a) Changing LSM/YSZ ratio from 60/4\%0 to 70/30 \%
 b) Decreasing the cathode sintering temperature from 1250 °C to 1100 °C. Maximum current density increased ~30 \%.

- Replacing 8YSZ by 8ScCeSZ
 Maximum current density with respect to those of 8YSZ electrolyte cells increased by a factor of ~2.

Co-cast cell Layers
Cut tapes with laser cutter
Firing and Screen Printing
Technical Accomplishment III
Statistical analysis of fabricated fuel cells and failure reasons

High performance fuel cells:
- Max. current > 160 mA/cm²
- OCV > 900 mV

<table>
<thead>
<tr>
<th>Batch No.</th>
<th>% of high performance fuel cells</th>
<th>Causes of low performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>110822</td>
<td>50% (4 of 8)</td>
<td>Cell deformation, Contamination</td>
</tr>
<tr>
<td>110613</td>
<td>50% (2 of 4)</td>
<td>Others</td>
</tr>
<tr>
<td>110719</td>
<td>20% (1 of 5)</td>
<td>Setup failure</td>
</tr>
<tr>
<td>110919</td>
<td>70% (9 of 13)</td>
<td>Poor cathode current collector</td>
</tr>
<tr>
<td>110617</td>
<td>80% (4 of 5)</td>
<td>Others</td>
</tr>
</tbody>
</table>

Other causes of failure
- 17%

Fuel cell delamination
- 26%

Delamination caused by leakage
- 78%

Other causes
- 22%
Two parallel stacks in series

Integration of carbon fuel cells in series and parallel configuration

Achieving high voltage by series connection of fuel cells
Technical Accomplishment V
Evaluation of long term anode catalyst activity
Continuous operation of series fuel cell stack in CH₄

Operating temperature: 750°C
Gas stream: 100 sccm He/CH₄/CO₂ (25 vol% CH₄, 25 vol% CO₂)

- 3-Ni/YSZ anode fuel cells in series configuration exhibited long term stability in CH₄ fuel. The performance dropped by 12% after 100 hr of operation.
Collaboration

• Partners
 – The Ohio Coal Development Office (State): Focusing on the fundamental research for the determination of the fuel cell efficiency.
 – FirstEnergy Corp (Industry): Addressing practical issues of the fuel cell stack scale-up.

• Technology Transfer:
 – Chemstress Co (Industry): Large scale fuel cell stack design.
Future Work

• Further testing of the coal injection and fly ash removal units.

• Demonstrate the long-term performance and durability of the fuel cell stack in series and parallel configuration.

• Further test of a small scale (< 10 kW) coke/coal fuel cell system.

Key milestones:

– Improve the coal injection and fly ash removal system.
– Integrate the fuel cell components into the coal fuel cell stack.
– Develop a operation and control system for the coal fuel cell stack.
Summary I

Relevance: Development of a high performance fuel cell for the electrochemical oxidation of coal/coke will significantly increase (>50%) the efficiency of the use of fossil fuels for electrical power generation with nearly zero emission.

Approach:

- Identification and test of the low cost anode catalysts, interconnect, fuel cell components for the design and fabrication of the coal fuel cell stack.
- Development of an integrated coal fuel cell stack for the conversion of coal to highly concentrated CO$_2$ and electricity.
Summary II

• **Technical Achievements**
 - The fuel cell performance was correlated to the –CH and -OH functional groups of the carbon fuel. Presence of surface functional groups makes the carbon fuel more reactive toward gasification with CO$_2$ and O$_2$.

 - Screen printing of LSM/YSZ cathodes (60/40 wt%) and firing at 1100 °C improved fuel cell reproducibility, facilitating production of batches as large as 100 units.

 - Integration of the fuel cells in series resulted in expected voltage build-up and showed high stability up to 100 h of continuous operation in CH$_4$.

• **Technology Transfer/Collaboration:**
 - Collaboration with the Ohio Coal Development Office and FirstEnergy Corp.
 - Working with Chemstress for the design of a fuel cell stack.

• **Proposed Future Research:**
 - Improve the coal injection and fly ash removal system.
 - Integrate the fuel cell components into the coal fuel cell stack.