Goal and Objectives

GOAL: Develop and demonstrate fuel cell power system technologies for stationary, portable, and transportation applications

Objectives

- By 2015, a fuel cell system for portable power (<250 W) with an energy density of 900 Wh/L.

- By 2017, a 60% peak-efficient, 5,000 hour durable, direct hydrogen fuel cell power system for transportation at a cost of $30/kW.

- By 2020, distributed generation and micro-CHP fuel cell systems (5 kW) operating on natural gas or LPG that achieve 45% electrical efficiency and 60,000 hours durability at an equipment cost of $1500/kW.

- By 2020, medium-scale CHP fuel cell systems (100 kW–3 MW) with 50% electrical efficiency, 90% CHP efficiency, and 80,000 hours durability at an installed cost of $1,500/kW for operation on natural gas, and $2,100/kW when configured for operation on biogas.

- By 2020, APU fuel cell systems (1–10 kW) with a specific power of 45 W/kg and a power density of 40W/L at a cost of $1000/kW.
Challenges & Strategy

The Fuel Cells sub-program supports research and development of fuel cell and fuel cell systems with a primary focus on reducing cost and improving durability. Efforts are balanced to achieve a comprehensive approach to fuel cells for near-, mid-, and longer-term applications.

Fuel Cell MYRD&D Plan recently updated:
http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/index.html

R&D portfolio is technology-neutral and includes different types of fuel cells.

FOCUS AREAS

- **Stack Components**
 - Catalysts
 - Electrolytes
 - MEAs, Gas diffusion media, and Cells
 - Seals, Bipolar plates, and Interconnects

- **Operation and Performance**
 - Mass transport
 - Durability
 - Impurities

- **Systems and Balance of Plant (BOP)**
 - BOP components
 - Stationary power
 - Fuel processor subsystems
 - Portable power
 - APU and emerging markets

Strategy

Materials, components, and systems R&D to achieve low-cost, high-performance fuel cell systems.

Fuel Cell R&D

Testing and Cost/Technical Assessments

Barriers

- Cost
- Durability
- Performance
Application-driven targets for commercial viability (in terms of cost and performance) were recently revised and updated.

- Targets revised for the complete portfolio guiding R&D for transportation, stationary, and portable applications
- Revised targets in recently released MYRD&D Plan
 http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/index.html

Examples of system-level targets:

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>2011 Status</th>
<th>2015 Targets</th>
<th>2020 Targets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical efficiency at rated power</td>
<td>34-40%</td>
<td>42.5%</td>
<td>>45%</td>
</tr>
<tr>
<td>CHP energy efficiency</td>
<td>80-90%</td>
<td>87.5%</td>
<td>90%</td>
</tr>
<tr>
<td>Equipment cost, 2-kW<sub>avg</sub> system</td>
<td>NA</td>
<td>$1,200/kW<sub>avg</sub></td>
<td>$1,000/kW<sub>avg</sub></td>
</tr>
<tr>
<td>Equipment cost, 5-kW<sub>avg</sub> system</td>
<td>$2,300 - $4,000/kW</td>
<td>$1,700/kW<sub>avg</sub></td>
<td>$1,500/kW<sub>avg</sub></td>
</tr>
<tr>
<td>Equipment cost, 10-kW<sub>avg</sub> system</td>
<td>NA</td>
<td>$1,900/kW<sub>avg</sub></td>
<td>$1,700/kW<sub>avg</sub></td>
</tr>
<tr>
<td>Transient response (10 - 90% rated power)</td>
<td>5 min</td>
<td>3 min</td>
<td>2 min</td>
</tr>
<tr>
<td>Start-up time from 20°C ambient temperature</td>
<td><30 min</td>
<td>30 min</td>
<td>20 min</td>
</tr>
<tr>
<td>Degradation with cycling</td>
<td><2%/1,000 h</td>
<td>0.5%/1,000 h</td>
<td>0.3%/1,000 h</td>
</tr>
<tr>
<td>Operating lifetime</td>
<td>12,000 h</td>
<td>40,000 h</td>
<td>60,000 h</td>
</tr>
<tr>
<td>System availability</td>
<td>97%</td>
<td>98%</td>
<td>99%</td>
</tr>
</tbody>
</table>
Challenges and Strategy: Automotive Applications

- **Strategic technical analysis guides focus areas for R&D and priorities.**
- **Need to reduce cost from $49/kW to $30/kW and increase durability from 2,500 to 5,000 hours.**
- **Advances in PEMFC materials and components could benefit a range of applications.**

Strategies to Address Challenges
- Lower PGM Content
- Pt Alloys
- Novel Support Structures
- Non-PGM catalysts

Key Focus Areas for R&D
- Catalyst Examples
 - Lower PGM Content
 - Pt Alloys
 - Novel Support Structures
 - Non-PGM catalysts

Targeted 80 kW PEM fuel cell system cost: $30/kW at 500,000 units/yr
Further reduction in capital cost of medium scale DG/CHP (100kW-3 MW) and natural gas availability will facilitate commercialization.

Challenges and Strategy: Stationary Applications

- Natural gas availability and fuel cell performance (efficiency) gains will enhance the technology’s market attractiveness.
- Further reduction of fuel cell system cost required to expedite commercialization.
- Development of a cost-effective process for removing fuel contaminants would allow for fuel flexibility.

Sensitivity analysis around 2015 targets assesses impact of fuel cell system cost and durability on commercialization prospects.

Technical Parameters (2015)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric Efficiency (LHV)</td>
<td>45.0%</td>
</tr>
<tr>
<td>Combined Efficiency (LHV)</td>
<td>87.5%</td>
</tr>
<tr>
<td>Size, MWe</td>
<td>1</td>
</tr>
<tr>
<td>Operating Life, years</td>
<td>20</td>
</tr>
<tr>
<td>Equipment, $/kWe</td>
<td>2,300</td>
</tr>
<tr>
<td>Engineering & Installation, $/kWe</td>
<td>700</td>
</tr>
<tr>
<td>Fixed O&M, $/MWh</td>
<td>13</td>
</tr>
<tr>
<td>Variable O&M, $/MWh</td>
<td>8.0</td>
</tr>
</tbody>
</table>
Challenges and Strategy: New Stationary Cost Analysis

Analysis highlights need for fuel processor cost reduction.

LT-PEM (≈ 80 °C)

<table>
<thead>
<tr>
<th>Sys/yr</th>
<th>1 kW</th>
<th>5 kW</th>
<th>25 kW</th>
<th>100 kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>$12K</td>
<td>$3.9K</td>
<td>$1.7K</td>
<td>$1.1K</td>
</tr>
<tr>
<td>1,000</td>
<td>$9.3K</td>
<td>$3.1K</td>
<td>$1.4K</td>
<td>$0.9K</td>
</tr>
<tr>
<td>10,000</td>
<td>$7.9K</td>
<td>$2.6K</td>
<td>$1.1K</td>
<td>$0.7K</td>
</tr>
<tr>
<td>50,000</td>
<td>$7.2K</td>
<td>$2.4K</td>
<td>$1K</td>
<td>$0.6K</td>
</tr>
</tbody>
</table>

HT-PEM (≈ 160 °C)

<table>
<thead>
<tr>
<th>Sys/yr</th>
<th>1 kW</th>
<th>5 kW</th>
<th>25 kW</th>
<th>100 kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>$11K</td>
<td>$4.2K</td>
<td>$1.7K</td>
<td>$1.3K</td>
</tr>
<tr>
<td>1,000</td>
<td>$8.8K</td>
<td>$3.3K</td>
<td>$1.5K</td>
<td>$1.1K</td>
</tr>
<tr>
<td>10,000</td>
<td>$7.5K</td>
<td>$2.8K</td>
<td>$1.2K</td>
<td>$0.8K</td>
</tr>
<tr>
<td>50,000</td>
<td>$6.9K</td>
<td>$2.5K</td>
<td>$1K</td>
<td>$0.7K</td>
</tr>
</tbody>
</table>

SOFC system analysis currently underway

* *B. D. James et al., SA*
Fuel Cells Budget

FY 2012 Appropriation = $45.0 M
FY 2013 Request = $38.0 M

EMPHASIS:

- Develop improved ultra-low PGM and non-PGM fuel cell catalysts and membrane electrolytes
- Improve PEM-MEAs through integration of state-of-the-art MEA components
- Identify degradation mechanisms and approaches for mitigating the effects
- Characterize and optimize transport phenomena improving MEA and stack performance
- Investigate and quantify effects of impurities on fuel cell performance
- Develop low-cost, durable, system balance-of-plant components
- Maintain core activities in components, subsystems and systems specifically tailored for stationary and portable power applications

Subject to appropriations
Projected high-volume cost of fuel cells has been reduced to $49/kW (2011)*

- More than 30% reduction since 2008
- More than 80% reduction since 2002

*Based on projection to high-volume manufacturing (500,000 units/year). The projected cost status is based on an analysis of state-of-the-art components that have been developed and demonstrated through the DOE Program at the laboratory scale. Additional efforts would be needed for integration of components into a complete automotive system that meets durability requirements in real-world conditions.
Progress – Durability Assessment

Aggregated results provide a benchmark in time of state-of-the-art fuel cell durability.

NREL is analyzing and aggregating durability results by application, providing a benchmark of state-of-the-art fuel cell durability (time to 10% voltage degradation). Results include 82 data sets from 10 fuel cell developers.

<table>
<thead>
<tr>
<th>Application</th>
<th>Avg Projected Time to 10% Voltage Drop</th>
<th>Avg Operation Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backup power</td>
<td>2,400</td>
<td>1,100</td>
</tr>
<tr>
<td>Automotive</td>
<td>4,000</td>
<td>2,700</td>
</tr>
<tr>
<td>Forklift</td>
<td>14,600</td>
<td>4,400</td>
</tr>
<tr>
<td>Prime</td>
<td>11,200</td>
<td>7,000</td>
</tr>
</tbody>
</table>

PEM & SOFC data from lab-tested, full active area short stacks and systems with full stacks. Data generated from constant load, transient load, and accelerated testing.

Please send inquiries to Fuelcelldatacenter@ee.doe.gov
Progress: De-alloyed Catalysts

Low-PGM de-alloyed catalysts meet mass activity and durability targets.

GM 50 cm² MEAs, at 0.1 mg₉Pt/cm²
H₂/air, 80°C, 170 kPa abs, stoichs 2/2

- PtCo₃ and PtNi₃ meet 0.44 A/mg₉PGM mass activity target
- PtCo₃ meets 30,000 cycle durability target
- PtNi₃ meets 0.56 V @ 1.5 A/cm² milestone

0.46 A/mg₉PGM for PtCo₃,
0.52 A/mg₉PGM for PtNi₃ in 50 cm² MEA testing

F. Wagner et al., GM
Roll-to-roll PtNi NSTF catalyst meets 0.44 A/mg$_{\text{PGM}}$ mass activity target.

- Achieved 0.44 A/mg$_{\text{PGM}}$ target on roll-to-roll produced MEAs through improvements in Pt$_3$Ni$_7$ catalyst processing techniques
- Reduced PGM total content to 0.14 – 0.18 g/kW, with 0.15 mg/cm2 (2017 targets: 0.125 g/kW, 0.125 mg/cm2)
- Progress in improving high-current performance of Pt$_3$Ni$_7$; still opportunity for further improvement
Membranes containing multi-acid side chains or additives demonstrate conductivity higher than 0.1 S/cm under hot, dry conditions.

Progress: Membranes

FuelCell Energy: mC² membranes use short side chains and additives to reach high conductivity

3M: multi-acid side chain polymers have met most membrane targets

Table:

<table>
<thead>
<tr>
<th>Condition</th>
<th>ASR (Ohm cm²)</th>
<th>3M PFIA Status</th>
<th>DOE 2017 Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASR at 120°C (pH₂O 40-80 kPa)</td>
<td>0.023 (40 kPa)</td>
<td>0.012 (80 kPa)</td>
<td>≤0.02</td>
</tr>
<tr>
<td>ASR at 80°C (pH₂O 25-45 kPa)</td>
<td>0.013 (25 kPa)</td>
<td>0.006 (44 kPa)</td>
<td>≤0.02</td>
</tr>
<tr>
<td>ASR at 30°C (pH₂O 4 kPa)</td>
<td>0.02 (3.8 kPa)</td>
<td></td>
<td>≤0.03</td>
</tr>
<tr>
<td>ASR at -20°C</td>
<td>0.1</td>
<td></td>
<td>≤0.2</td>
</tr>
<tr>
<td>O₂ Crossover</td>
<td><1.0</td>
<td></td>
<td>≤2</td>
</tr>
<tr>
<td>H₂ crossover</td>
<td><1.8</td>
<td></td>
<td>≤2</td>
</tr>
<tr>
<td>Mechanical Durability</td>
<td>>20,000</td>
<td></td>
<td>≥20,000</td>
</tr>
<tr>
<td>Chemical Durability (OCV)</td>
<td>2,025</td>
<td></td>
<td>≥500</td>
</tr>
</tbody>
</table>

L. Lipp et al., FuelCell Energy

S. Hamrock et al., 3M
Progress: Durable Catalysts

3M catalysts demonstrate durability under startup, shutdown, and cell reversal.

IrRu-modified cathodes have achieved the SU/SD Go/No Go requirement: 5,000 cycles with end voltage < 1.60 V, ECSA loss <10% with < 0.09 mg/cm² PGM

IrRu-modified anodes have achieved the cell reversal Go/No Go requirement: 200 cycles with end voltage < 1.80 V, with < 0.045 mg/cm² PGM

All Go/No-go milestones surpassed at:
- PGM loading < 0.135 mg/cm² total
- Voltages meet the set goals

R. Atanasoski et al., 3M
Progress: Portable Power

High-activity catalysts developed for liquid fuels

- JMFC’s ternary PtRuSn/C DMFC catalyst combines advantages of PtSn at low overpotentials and PtRu at high overpotentials
- PtRuSn/C outperforms the best thrifted PtRu/C catalyst

PtRuSn/C methanol mass activity exceeds 500 mA/mgPt at 0.35 V, 150% higher than FY12 milestone

- DME fuel cell outperforms DMFC at low current due to low DME crossover

DME fuel cell achieves 150 mA/cm² at 0.5 V – 60% higher than FY11, 130% higher than best published data
Progress: Portable Power

Passive water recovery DMFC enables BOP reduction.

- >10,000 hour stack durability demonstrated in steady-state testing
- Startup/shutdown durability improvements still needed

Cathode liquid barrier layer retains water; passive recirculation returns water to anode

Average cell voltage at 120 mA/cm², 0.8 M methanol and 50°C for an 8 cell stack

| DOE Technical Targets: Portable Power Fuel Cell Systems (10-50 Watts) |
|------------------|-----------------|----------------|----------------|------------------|
| Characteristic | Units | DOE 2011 Status | UNF Status (25 W Net)¹ | 2013 Targets | 2015 Targets |
| Specific Power | W/kg | 15 | 26.3 | 30 | 45 |
| Power Density | W/l | 20 | 28.0 | 35 | 55 |
| Specific Energy | (W-hr)/kg | 150 | 263 | 430 | 650 |
| Energy Density | (W-hr)/l | 200 | 280 | 500 | 800 |

¹ Values based on 10 hour operation duration.

J. Fletcher et. al., UNF
Progress: Balance of Plant

Compact, low-cost humidifier module projected to meet $100/unit 2017 cost target

High performance, cost-effective humidification membranes developed

- Flow field, pleat geometry and module design optimization to take advantage of very high transport rate materials, while maintaining low-cost assembly process.

- Membrane pocket over plate assembly concept selected

- Scale-up of these materials is underway.

- Module performance consistent with single cell and ex situ testing shows loss of performance of 20-30% over 5500 hours.

- Developed understanding of source of durability loss – chemical changes in PFSA

- Sub-scale module design complete; sub-scale prototypes built and under test

- Final full scale module to be built

Module cost estimated to be ~$100 at high volumes.

W. B. Johnson et al., Gore
Progress: Stack technology for material handling

Increased freeze-tolerance and durability for material handling applications

- Air cooled stack technology enabled reduction in projected order picker cost by 57%, life cycle cost by 32%.
- Minimal degradation seen from freeze start-ups from -10 °C.
- Substantial operation at -30 °C possible with system mitigation strategies.

- Next Generation Order Picker based on technology developed in this project, with over 100 units shipped to at least 4 customers in Q4 2011.
- Units can operate in a freezer environment; operating range -30°C to +40°C.

D. Hancock et al., Plug Power
Catalyst Scale-up

Brookhaven core-shell catalyst technology licensed by leading catalyst manufacturer

- Jan. 3, 2012 – N.E. Chemcat Corporation, a leading catalyst and precious metal compound manufacturer, licensed core-shell electrocatalysts developed by BNL under previous EERE project.

 - Includes catalysts with Pd or Pd-alloy cores, Pt shells

 - N.E. Chemcat also licensed innovative methods for making the catalysts and an apparatus design used in manufacturing them.

Current BNL project is developing new core-shell structures and improving performance and durability.

Pt monolayer on PdAu nanorod

R. Adzic, et al., BNL
Demonstrated a kW-scale reversible SOFC stack with daily cycling between fuel cell and electrolysis mode, with SOFC degradation rate of ~1.6% per 1,000 hours.

Successfully completed 8,000 hrs desulfurizer testing and 1,000 hrs catalytic partial oxidation (CPOX) reformer testing as part of 1 MW SOFC powerplant concept running on pipeline natural gas.

R. Petri et al., Versa Power Systems

M. Perna et al., Rolls Royce Fuel Cell Systems
Key Milestones and Future Plans

- Updated Multi Year RD&D Plan & Targets Released
- Flow Cells Workshop
- New FOA* Awards
- Cost analyses updates
- Develop an experimentally validated model describing mass transport in PEMFCs.
- Develop a 10-fold accelerated test for high-temperature fuel cell durability testing
- Develop PEM bipolar plates with a cost less than or equal to $5/kW

FY 2012
- Cost analysis projects kicked off
- RFI for MHE released
- FOA Awards Announced

FY 2013
- Develop truck APU with projected durability of 10,000 hours, at a cost of $1400/kW, operating on standard ultra-low sulfur diesel.

FY 2014
- Develop new FOA Awards
- Subject to Appropriations
New Fuel Cell Projects

5 new projects announced in FY 2011 (cost analysis) and FY 2012 (R&D) — total award of ~$10M

Cost Analysis

Transportation (Strategic Analysis)
- Analyze and estimate the cost of transportation fuel cell systems for use in vehicles including light-duty vehicles and buses

Stationary and Emerging Markets (Battelle, LBNL)
- Develop total cost models and provide cost assessments for stationary and emerging market fuel cell system technologies

Research & Development

MEA Integration (3M)
- Approach is based upon integration of 3M’s state-of-the-art nanostructured thin film catalyst technology platform with other components of the MEA

System BOP (Eaton)
- Develop and demonstrate an efficient and low-cost fuel cell air management system
New Targets for Fuel Cell Buses

Commercialization targets have been established for fuel cell buses.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Units</th>
<th>2012 Status</th>
<th>Targets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus Lifetime</td>
<td>years/miles</td>
<td>5/100,000</td>
<td>12/500,000</td>
</tr>
<tr>
<td>Power Plant Lifetime</td>
<td>hours</td>
<td>12,000</td>
<td>25,000</td>
</tr>
<tr>
<td>Bus Availability</td>
<td>%</td>
<td>70</td>
<td>90</td>
</tr>
<tr>
<td>Fuel Fills</td>
<td>per day</td>
<td>1</td>
<td>1 (< 5 min)</td>
</tr>
<tr>
<td>Bus Cost</td>
<td>$</td>
<td>2,000,000</td>
<td>600,000</td>
</tr>
<tr>
<td>Power Plant Cost</td>
<td>$</td>
<td>700,000</td>
<td>200,000</td>
</tr>
<tr>
<td>Hydrogen Storage Cost</td>
<td>$</td>
<td>100,000</td>
<td>50,000</td>
</tr>
<tr>
<td>Road Call Frequency (All/Fuel Cell System)</td>
<td>miles between road calls</td>
<td>2,500/10,000</td>
<td>4,000/20,000</td>
</tr>
<tr>
<td>Operation Time</td>
<td>hours per day/ days per week</td>
<td>19/7</td>
<td>20/7</td>
</tr>
<tr>
<td>Scheduled and Unscheduled Maintenance Cost</td>
<td>$/mile</td>
<td>1.24</td>
<td>0.38</td>
</tr>
<tr>
<td>Range</td>
<td>miles</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>Fuel Economy</td>
<td>miles per gallon diesel equivalent</td>
<td>6.5</td>
<td>8</td>
</tr>
</tbody>
</table>

- Targets were developed through a joint workshop and a joint RFI with the Department of Transportation.
- Status information was supplemented with data from the NREL Hydrogen Fuel Cell Bus Evaluations.

DOE Hydrogen and Fuel Cells Program Record #12012
Preliminary cost, performance, and durability targets for backup power and for class I, II, and III lift trucks proposed; feedback from stakeholders requested.

Preliminary targets based on input from ARRA projects and NREL analysis

Questions and RFI responses may be addressed to MHBPtargets@go.doe.gov
Fuel Cell Collaborations

DOE

(Energy Efficiency & Renewable Energy - EERE)

- Fuel Cells sub-program
- **Fuel Cell System R&D**
 - ARRA Projects
 - SBIR Projects
 - 33 R&D projects

INTERNATIONAL ACTIVITIES

- FCT Program
- IEA Hydrogen Implementing Agreements
 - 22 countries
 - European Union
- IPHE
 - 17 counties
 - European Commission

INDUSTRY

- Fuel Cells Tech Team

TECHNOLOGY VALIDATION *(DOE EERE)*

DOE – Basic Energy Sciences

- ~30 Projects

NSF

- New projects in basic science

NIST

- Neutron imaging facility

DOT

- Bus Applications

Fossil Energy

- Solid Oxide Fuel Cells

National Collaboration *(inter- and intra-agency efforts)*
For More Information

Fuel Cells Team

Dimitrios Papageorgopoulos
Fuel Cells Team Leader
202-586-3388
dimitrios.papageorgopoulos@ee.doe.gov

Nancy Garland
Catalysts, Durability, Impurities, International
202-586-5673
nancy.garland@ee.doe.gov

Donna Lee Ho
Durability, Membranes, APUs, Portable Power, Mass Transport
202-586-8000
donna.ho@ee.doe.gov

Greg Kleen
Membranes, Mass Transport, MEAs, High-T Fuel Cells
720.356-1672
greg.kleen@go.doe.gov

Jason Marcinkoski
Cost Analysis, Bipolar Plates, BOP, Automotive, Stationary Power
202-586-7466
jason.marcinkoski@ee.doe.gov

Kathi Epping Martin
USDRIVE Fuel Cell Tech Team, Membranes, MEAs, Durability, Fuel Processors, Stationary Power
202-586-7425
kathi.epping@ee.doe.gov

Dimitrios Papageorgopoulos
Fuel Cells Team Leader
202-586-3388
dimitrios.papageorgopoulos@ee.doe.gov

David Peterson
Stationary Power, High-T Fuel Cells, Catalysts, Durability, Fuel Processors, APUs
720-356-1747
david.peterson@go.doe.gov

Reginald Tyler
Cost Analysis, BOP, Durability, Impurities, Portable Power, Stationary Power
720-356-1805
reginald.tyler@go.doe.gov

Jacob Spendelow
Technical Advisor on Detail from LANL
202-586-4796
jacob.spendelow@ee.doe.gov

Acknowledgements:
Tom Benjamin, John Kopasz, and Walt Podolski (ANL); Cassidy Houchins (SRA International); Larry Blair (Consultant)