

Hydrogen Embrittlement of Structural Steels

Brian Somerday Sandia National Laboratories May 17, 2012

Project ID # PD025

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000

Overview

Timeline

- Project start date Jan. 2007
- Project end date Oct. 2012*
- Percent complete 60%

Budget

- Total project funding (to date)
 - DOE share: \$1000K
- FY11 Funding: \$200K
- FY12 Funding: \$100K

*Project continuation and direction determined annually by DOE

Barriers & Targets

- Pipeline Reliability/Integrity
- Safety, Codes and Standards, Permitting
- High Capital Cost and Hydrogen Embrittlement of Pipelines

Partners

- DOE Pipeline Working Group
 - Federal Labs: Sandia, Oak Ridge, Savannah River, NIST
 - Universities: Univ. of Illinois
 - Industry: Secat, industrial gas companies, ExxonMobil
 - Standards Development
 Organizations: ASME

Objectives/Relevance

- Why steel hydrogen pipelines?
 - Safety of steel pipelines well understood (e.g., third-party damage tolerance, vulnerability of welds)
 - Hydrogen pipelines safely operated under static pressure
- Demonstrate reliability/integrity of steel hydrogen
 pipelines for cyclic pressure
 - Address potential fatigue crack growth aided by hydrogen embrittlement, particularly in welds
- Enable pipeline reliability/integrity framework that accommodates hydrogen embrittlement
 - Ensure relevance to H_2 pipeline code ASME B31.12
- FY11-FY12: quantify effects of O₂ impurities on fatigue crack growth laws for X52 steel in H₂ gas

Approach

- Apply unique capability for measuring fracture properties of steels in high-pressure H₂
 - Fracture properties serve as inputs into reliability/integrity assessment as specified in ASME B31.12 pipeline code
 - Milestone: Determine the threshold level of O₂ concentration required to mitigate accelerated fatigue cracking for X52 steel in 21 MPa H₂ gas (~100% complete)
 - Milestone: Measure the fatigue crack growth law for X65 pipeline girth weld in H₂ gas (10% complete)
- Emphasize pipeline steels and their welds identified by stakeholders as high priority
 - Provide feedback to stakeholders through DOE Pipeline Working Group

Reliability/integrity assessment framework in ASME B31.12 requires fracture data in H₂

1.0

Fracture data in H₂ measured using specialized lab capabilities: fatigue crack growth

Material

-X52 ERW pipeline steel

- Instrumentation
 - -Internal load cell in feedback loop
 - Crack-opening displacement measured internally using LVDT
 - -Crack length calculated from compliance
- Mechanical loading
 - -Triangular load-cycle waveform
 - –Constant load amplitude (increasing ΔK)
- Environment
 - -Primary supply gas: 99.9999% H₂
 - -Other supply gases: H₂ with 10-1000 ppm O₂
 - -Pressure = 3,000 psi (21 MPa)
 - -Room temperature

Measured fracture properties of technologically relevant steel: API 5L X52

- Tested same X52 steel from DOE Pipeline Working Group tensile property round robin
 - Stakeholders expressed interest in X52 steel
- Tensile properties
 - Yield strength: 62 ksi (428 MPa)
 - Ultimate tensile strength: 70 ksi (483 MPa)

base metal

Accomplishment: Measured onset of H_2 -accelerated fatigue cracking as function of ΔK and O_2 concentration

- Increasing O_2 concentrations systematically mitigate H_2 -accelerated fatigue crack growth
 - Onset of H_2 -accelerated fatigue crack growth displaced to higher ΔK
- At O₂ concentrations <100 ppm, H₂-accelerated cracks propagate along grain boundaries
- O₂-affected fatigue crack growth laws lead to enhanced reliability/integrity for steel H₂ pipelines

Accomplishment:

Quantified effects of load-cycle frequency on O₂-modified, H₂-accelerated fatigue cracking

- Inhibiting effect of O₂ more pronounced at lower load-cycle frequencies
- Threshold level of O₂ concentration required to mitigate accelerated fatigue cracking depends on load-cycle frequency
 - H_2 -accelerated fatigue cracking effectively suppressed for all O_2 concentrations >10 ppm when frequency <0.1 Hz

Accomplishment:

Quantified effect of load ratio (R= K_{min}/K_{max}) on O_2 -modified, H_2 -accelerated fatigue cracking

- At higher O₂ concentrations, increasing R ratio magnifies retarding effect of O₂ on H₂-accelerated fatigue cracking
 - No accelerated cracking observed in H_2 + 1000 ppm H at higher R ratio
- Effect of O₂ on enhancing reliability/integrity more pronounced if H₂ pipeline operated at higher pressure ratios (i.e., p_{min}/p_{max})

Accomplishment:

Developed model for role of mechanical crack growth rate in stimulating H₂-accelerated cracking

- K_{max} governs crack-tip stresses that activate intergranular cracking
- da/dN governs rate of baremetal exposure and atomic hydrogen uptake

$$\frac{d[H]}{dN} \propto \theta_{H} = (1 - \theta_{O})$$
$$\theta_{O} \propto \frac{1}{da/dN}$$

 θ = fractional surface coverage of hydrogen ($\theta_{\rm H}$) or oxygen ($\theta_{\rm O}$)

Assume $\theta_{\rm H}$ + $\theta_{\rm O}$ = 1

(Wei and Simmons, <u>Fatigue: Environment and</u> <u>Temperature Effects</u>, 1983) Physics-based model presumes that cracking accelerates when threshold levels of K_{max} and "mechanical" da/dN exceeded

Reprinted, with permission, from <u>ASTM STP1020 Fracture Mechanics</u>: <u>Perspectives and Directions (Twentieth Symposium)</u>, copyright ASTM International, 100 Barr Harbor Drive, West Conshohocken PA, 19428

Accomplishment: Model based on rate-limiting O_2 diffusion predicts effects of O_2 concentration, R ratio, and frequency

- O₂ diffusion model assumptions:
 - steady state
 - $p_{O2} = 0$ at crack tip
- Mass balance between O₂ flow in gas during one cycle and O₂ adsorbed on fresh crack-tip surface yields:

$$\frac{da}{dN} = \frac{Dp_{02}}{\theta_0 \pi v RT} \frac{0.6(1 - v_p^2)}{E\sigma_0} \left(\frac{\Delta K}{\sqrt{a}(1 - R)}\right)^2$$

- Predictions of "mechanical" da/dN required for $\theta_0 < 1$
 - Point 1: 1 ppm O₂
 - **Point 2: 10** ppm O₂
 - Point 3: 100 ppm O₂
 - Point 4: 1000 ppm O₂, R=0.5
- Model enables extrapolation of laboratory data to predict effects of O₂ in pipeline

Collaborations

- DOE Pipeline Working Group (PWG)
 - Participants funded by DOE FCT Program
 - Federal Labs: Sandia, Oak Ridge, Savannah River
 - Universities: Univ. of Illinois
 - Industry: Secat
 - Participants not funded by DOE FCT Program
 - Federal Labs: NIST
 - Industry: industrial gas companies, ExxonMobil
 - Standards Development Organizations: ASME
 - Extent of collaborations include:
 - PWG meetings (up to 2 times/year)
 - Supplying materials (e.g., ExxonMobil-Sandia)
 - Coordinating testing (e.g., NIST-Sandia)
- International Institute for Carbon-Neutral Energy Research (I²CNER), Fukuoka, Japan (e.g., O₂ diffusion model)

Proposed Future Work

Remainder of FY12

 Measure fatigue crack growth law of girth weld fusion zone from X65 steel in H₂ gas (Milestone: June 2012)

FY13

- Measure fatigue crack growth law of girth weld heataffected zone (HAZ) in H₂ gas
- Conduct reliability/integrity analysis of X52 H₂ pipeline using operating parameters supplied by industry partner
- Expand pipeline steel testing beyond X52, e.g., transition to higher-strength steels such as X70 and X80

Summary

- Measured fracture thresholds and fatigue crack growth laws allow evaluation of reliability/integrity of steel H₂ pipelines
 - Hydrogen embrittlement accommodated by measuring fracture properties in H₂ following ASME B31.12 design standard
- Measurements on X52 steel in H₂ gas with O₂ impurities reveal the following trends:
 - O₂ systematically retards H₂-accelerated fatigue crack growth as concentration increases from 10 ppm
 - Inhibiting effect of O_2 more pronounced at high load ratio
 - Threshold level of O₂ concentration required to mitigate accelerated fatigue cracking depends on load-cycle frequency
- Effects of O₂ concentration, R ratio, and frequency on O₂-modified, H₂-accelerated fatigue can be predicted from model

