Multiply Surface-Functionalized Nanoporous Carbon for Vehicular Hydrogen Storage

P. Pfeifer¹, C. Wexler¹, P. Yu¹, G. Suppes², F. Hawthorne¹,³,⁴, S. Jalisatgi⁴, M. Lee³, D. Robertson³,⁵

¹Dept. of Physics, ²Dept. of Chemical Engineering, ³Dept. of Chemistry, ⁴Dept. of Radiology, ⁵University of Missouri Research Reactor

University of Missouri, Columbia, MO 65211

S. Chakraborti
MRIGlobal, Kansas City, MO 64110

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

Timeline
- Project start date: September 1, 2008
- Project end date: November 30, 2013
- Percent complete: 75%

Budget
- **Total project funding:**
 - DOE share: $1,899K
 - Contractor share: $514K
- **Funding for FY 2011**
 - DOE share: $340K
 - Contractor share: $125K
- **Funding for FY 2012**
 - DOE share: $214K
 - Contractor share: $145K (est.)

Barriers
- System weight & volume
- System cost
- Charging/discharging rates
- Thermal management
- Lack of understanding of hydrogen physisorption & chemisorption

Partners
- L. Simpson, P. Parilla, K. O’Neill - NREL
- J. Ilavsky - Advanced Photon Source, ANL
- C. Brown, J. Burress - NIST
- L. Firlej - U. Montpellier II, France
- B. Kuchta - U. Marseille, France
- S. Roszak - Wroclaw U. Technology, Poland
- H. Taub - U. Missouri
- M. Stone - ORNL
Objectives & Relevance

Fabricate high-surface-area, multiply surface-functionalized nanoporous carbon, from corncob & other precursors, for reversible H₂ storage (physisorption) with superior storage capacity

- Understand mechanisms & optimize procedures for boron doping of activated carbon

Characterize materials & demonstrate storage performance

- Determine pore-space architecture, nature of functionalized sites, H₂ sorption isotherms (0-200 bar), isosteric heats, & kinetics, at 77-300 K
- Establish effectiveness of boron functionalization by deposition & pyrolysis of (i) B₁₀H₁₄ & (ii) BCl₃
- Establish B-C bonds in B-functionalized materials (FTIR, XPS)
- Establish enhanced binding & adsorption of H₂ on boron-functionalized carbon
- Develop computational predictions of H₂ adsorption for various pore geometries/chemistries

Optimize pore architecture & composition

- Establish optimal precursors for H₂ storage as function of KOH:C ratio & activation temperature
- Compare B-functionalized carbons produced by different synthesis methods
Background

Sorption Landscape

Gravimetric Storage Capacity (g/kg material) vs. Volumetric Storage Capacity (g/L material)

- Powder
- Alane (AlH₃) Complex hydride
- MgH₂
- NaAlH₄
- Chemical hydride
- Methane ~80 bar, 293 K
- MOF: crystal density
- MU AC: intragranular density

Physical adsorption
- Compressed H₂
 - 100 bar, 80 K
Approach

- Raise binding energy of H\textsubscript{2} on carbon by functionalization of surface with boron
 - Firlej et al., 2009; Kuchta et al., 2010: Binding energy of H\textsubscript{2} on carbon: 5 kJ/mol, on B-substituted carbon: 10-15 kJ/mol
 - Computed H\textsubscript{2} ads. isotherms (GCMC) at 10 wt\% B:C: 5 wt\% H\textsubscript{2} at 293 K, 100 bar

- (1) Produce high-surface-area carbon, (2) Dope surface with B (> 2000 m2/g)
 - B\textsubscript{10}H\textsubscript{14} (volatile), incorporate B into lattice by thermal annealing
 - Achieved ~ 10\% B:C: small reduction in surface area, higher isosteric heat of adsorption, higher excess adsorption at room temperature

- 10-liter hydrogen sorption tank
 - Flow measurement & control (transport & sorption kinetics, heat management)

- Surface, pore, and chemical characterization of materials
 - GCMC: adsorption in heterogeneous pores, non-traditional pore geometries, etc.
 - SAXS & N2 sorption: characterization of pore geometries
 - FTIR & XPS: characterization of incorporated boron

- Carbon monoliths for increased hydrogen storage
 - Boron-doped monoliths for optimization of gravimetric & volumetric storage capacity
Technological Accomplishments

AX-21, U. Missouri: 3K-600C (0% boron), 3K-H60 (I,B) (7% boron)

U. Missouri:
Projected from experimental values

AX-21:
Hydrogen storage engineering center of excellence. *Anton. et al.*, 2010-2011. The gravimetric and volumetric storage capacity of material AX-21 decreased by ~62% and ~44% respectively when including the complete storage system.
Technical Accomplishments

Boron-doped Carbons from $B_{10}H_{14}$ Deposition: Different Synthesis Methods

<table>
<thead>
<tr>
<th>Sample (B-doped: out of 12 samples synthesized 2011-12)</th>
<th>Precursor</th>
<th>B:C %</th>
<th>ΣN_2 (m2/g)</th>
<th>Φ_{N_2}</th>
<th>Annealing temp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3K 3/3/10-B</td>
<td>Self</td>
<td>0.0</td>
<td>2700</td>
<td>0.77</td>
<td>N/A</td>
</tr>
<tr>
<td>3K 3/3/10-B Outgassed@ 600 °C</td>
<td>Self</td>
<td>0.0</td>
<td>2500</td>
<td>0.76</td>
<td>N/A</td>
</tr>
<tr>
<td>3K-H60 (I,A), 1-step doping</td>
<td>3K 3/3/10-B Outgassed@ 600 °C</td>
<td>8.6</td>
<td>2100</td>
<td>0.74</td>
<td>600°C</td>
</tr>
<tr>
<td>3K-H60 (I,B), 1-step doping</td>
<td>3K 3/3/10-B Outgassed@ 600 °C</td>
<td>6.7</td>
<td>2100</td>
<td>0.72</td>
<td>1000°C</td>
</tr>
<tr>
<td>3K-H79 (I,A), 5-step doping</td>
<td>3K-H78 (I,A)</td>
<td>7.1</td>
<td>2200</td>
<td>0.78</td>
<td>600°C</td>
</tr>
</tbody>
</table>

- Achieved ~ 9% B:C, 1-step doping: no significant reduction in surface area (< 15%)
- Achieved ~ 7% B:C, 5-step doping: no significant reduction in surface area (< 15%)
- 5-step doping gives ~ 20% increase in total pore volume vs. 1-step doping
- Annealing at 1000 °C reduces B content by ~ 20%, with unchanged surface area and pore size distribution, loss of B through further decomposion
Technical Accomplishments

Hydrogen Sorption on B-doped Samples: Cryogenic and Room Temperature

- Systematic increase of H$_2$ with B:C doping ratio: 3K-H60(I,A) > 3K-H60(I,B) at 303 K
- Enhancement at high T, P: increase in average binding energy
- At 80K: 3K-H60(I,A) was exposed to oxygen before analysis, hence lower uptake than 3K-H60(I,B); but still better than 3K
Technical Accomplishments

Enhanced Isosteric heats for B-doped carbon

\[\Delta_{ads} H(\theta) = R \frac{T_1 T_2}{T_2 - T_1} \ln \left(\frac{p_2(T_2, \theta)}{p_1(T_1, \theta)} \right), \]

Clausius-Clapeyron equation

- B-doped materials increase binding energy from \(~6\) kJ/mol to \(~10\) kJ/mol
- Enhanced \(\Delta h\), similar to our theoretical predictions (2009-2010)
- Absolute isotherms used [see 2011 AMR]
- 273 K has 80% higher excess adsorption than 303 K; doubling of binding energy results in quadratic increase in adsorption, in Henry's law regime, as temperature decreases
Technical Accomplishments

Decaborane Deposition at Low Vapor Pressure

- Langmuir isotherms at $T=100, 150, 200, 250$ C (blue, red, gold, green)
- ‘X’ marks decaborane vapor pressures at respective temperatures
- Lower (upper) bound on binding energy suggests 10% coverage achievable without pore blockage for $T < 150$ C ($T < T_{\text{decomposition}}$)
- Experimental pressures and temperatures close to computational optimum
During annealing, decaborane will decompose into a plasma of boron ions.

- Large amount of energy required to directly replace a carbon with boron ($\Delta E \approx 600 \text{ kJ/mol}$).
- Activated carbon is comprised of loose flakes of likely defective graphene.

If a defect is already present, carbon structure readily incorporates boron ($\Delta E \approx -1000 \text{ kJ/mol}$).
Technical Accomplishments

Small Angle X-ray Scattering

- Boron doping has minimal effect at large length scales
- $q < 3 \times 10^{-3}$ Å$^{-1}$: surface fractal network with $D_s \approx 2.5$
- $q > 0.3$ Å$^{-1}$: modeled with Guinier fit to determine radius of gyration

<table>
<thead>
<tr>
<th>Model</th>
<th>3K-600C</th>
<th>3K-H60 (I,A)</th>
<th>3K-H60 (I,B)</th>
<th>3K-H63 (I,A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boron content (%)</td>
<td>0 %</td>
<td>9 %</td>
<td>7 %</td>
<td>21 %</td>
</tr>
<tr>
<td>Radius of gyration</td>
<td>6 Å</td>
<td>7 Å</td>
<td>7 Å</td>
<td>10 Å</td>
</tr>
<tr>
<td>Side length square cross section pore, from R_G</td>
<td>14 Å</td>
<td>18 Å</td>
<td>17 Å</td>
<td>25 Å</td>
</tr>
<tr>
<td>Ave pore width (SAXS, knee)</td>
<td>23 Å</td>
<td>28 Å</td>
<td>26 Å</td>
<td>36 Å</td>
</tr>
<tr>
<td>Ave pore width (N_2 sorption)</td>
<td>18 Å</td>
<td>29 Å</td>
<td>28 Å</td>
<td>N/A</td>
</tr>
</tbody>
</table>

- Radius of gyration and resulting average pore widths increase linearly with boron content
- Consistent with reduction in pore volumes of narrowest pores
Technical Accomplishments

X-ray photoelectron spectroscopy

- ~50% of the boron in sample is bound to a carbon.
- Main carbon peak resolved into two component peaks with energies characteristic of C-B and C-C bonds.
- 26% of carbon being in a C-B bond is consistent with ~8% boron where boron has displaced a carbon in hexagonal lattice.

XPS results consistent with boron incorporated into lattice
- Room to improve remaining ~50% of boron
Technical Accomplishments

Fourier Transform Infrared Spectroscopy

- FTIR was used in transmission mode to identify the nature of the boron bonds in boron doped activated carbon.
- FTIR observation of line at 1022 cm\(^{-1}\) characteristic of B-C bonds (A. P. Cote, et al., "Science,"
- First time that the existence of B-C bonds in boron-doped carbons (vapor deposition) has been observed
Technical Accomplishments

Fourier Transform Infrared Spectroscopy

FTIR (2011)
Consistent with XPS (2012)

- Sample post-treatment successful in removing surface oxidation as evidenced by elimination of O-H bending and C-O stretch modes at ~1650 cm$^{-1}$ & ~1050 cm$^{-1}$, respectively

O-H bending
C-O stretch

Before heat treatment

After heat treatment

Sample post-treatment successful in removing surface oxidation as evidenced by elimination of O-H bending and C-O stretch modes at ~1650 cm$^{-1}$ & ~1050 cm$^{-1}$, respectively
Technical Accomplishments

10-liter Hydrogen Sorption Instrument

- 10-liter system capable of non-equilibrium measurements (pressure temperature, flow rate)
- Gives information about heat management and sample/tank kinetics

Capacity: 10.6 L
Pressure: 0-100 bar
Temp.: 194-303 K
Flow rate range: (0-400 Ln/min H₂)
Technical Accomplishments

10-liter Hydrogen Sorption Instrument

- 10-liter system validated, including sorbent homogeneity
- Gravimetric storage (total) capacity of bulk material is higher than that of individual carbon grains because porosity is higher

\[
V_{ST} = G_{ex} \left(1 - \phi\right) \rho_{skel} + \phi \rho_{gas}
\]

\[
G_{ST} = \frac{V_{ST}}{(1 - \phi) \rho_{skel}}
\]

\[
G_{ST} = G_{ex} + \frac{\rho_{H_2} \phi}{(1 - \phi) \rho_{skel}}
\]

\[
\phi_{intragranular} = \frac{V_{pore}}{V_{pore} + V_{skel}} < \phi_{tank} = 1 - \frac{V_{skel}}{V_{tank}}
\]
Here are the technical accomplishments:

- Able to fill the tank to 95% capacity in 3.3 minutes, 303 K; no heat exchanger
- Gravimetric storage capacity will increase 5% with improved outgassing procedure
Technical Accomplishments

Mixing procedure:
- Adsorbent
- Binder

Compaction:
- Melted binder

Pyrolysis:

Multi-variable optimization:
- Powder precursor
- Activation temperature
- Activation agent concentration
- Binder material
- Binder mass concentration
- Mixing procedure
- Compaction time
- Compaction pressure
- Compaction temperature
- Pyrolysis time
- Pyrolysis temperature

Final monolith composition:
- 80-85 % AC adsorbent: 2600 m²/g
- 15-20 % carbon from binder: 700 m²/g
Technical Accomplishments

Optimization of Carbon Monoliths

- Optimal gravimetric monolith: high surface area and high density
- Optimal volumetric monolith: high surface area and low density

- Assumption: No dependence between excess adsorption and porosity

- Surface area optimized for various synthesis parameters
 - $T =$ Compaction temperature
 - $S =$ Binder:carbon ratio
 - $P =$ Carbon precursor
 - $H =$ Pyrolysis temperature

- Optimal monolith will be boron-doped & tested for hydrogen uptake
Technical Achievements (Summary)

- B can be incorporated into high-surface area nanoporous carbon
- Raises the binding energy and enhances excess adsorption
- Precursor monoliths optimized for surface area and await doping
Collaborations

- **Midwest Research Institute** (Subcontractor): design & construction of instrument for large-scale, automated B-doping

- **NREL** (Federal): L. Simpson, P. Parilla, K. O’Neill—Validation of H₂ uptake

- **NIST** (Federal): Y. Liu, G. Brown, J. Burress—small-angle neutron scattering with in-situ, adsorbed H₂

- **Wroclaw U. Technology**, Poland (Academic): S. Roszak—adsorption potentials for H₂ sorption on B-doped materials from ab initio quantum-chemical computations

- **ORNL** (Federal): M. Stone, R. Olsen—incoherent inelastic neutron scattering with in-situ, adsorbed H₂

- **U. Missouri** (Academic): M. Greenlief—XPS analysis
Future Work: Plans for 2012/13

- Characterize granular materials & demonstrate storage performance
 - Study boron-carbon bonds with micro-Raman spectroscopy & solid-state NMR
 - In-situ Raman spectroscopy of B-C bonds & mass spectroscopy of volatile reaction products during decaborane decomposition & annealing
 - Investigate advantages of multi-step doping over single step doping
 - Investigate new boron-doping methods: (i) high-temperature dissolution of boron into high-surface-area carbon; (ii) boron-carbide-derived high-surface-area materials

- Manufacture and test monolithic materials
 - Manufacture boron-doped monoliths
 - Test performance of monoliths (3.5”diameter) in 10-liter hydrogen tank during charging/discharging (temperature/pressure as a function of time; thermal management)
Manufactured B-substituted carbon under O$_2$-free conditions by thermolysis of B$_{10}$H$_{14}$, with B:C = 7-10 wt%, without compromising high surface areas (≥ 2000 m2/g)

Demonstrated that B:C = 8.6 wt% raises areal excess adsorption at 303 K & 200 bar by 30% relative to undoped material, indicates increase in average binding energy, not solely highest binding energy

Demonstrated that B:C = 8.6 wt% (annealed at 1000 C) raises areal excess adsorption at 80 K & 200 bar by 20% relative to undoped material

Demonstrated that B-doped carbon has a significantly higher isosteric heat of adsorption (10-12 kJ/mol) vs. undoped material (5-6 kJ/mol)

Established existence of B-C bonds in B-doped carbons, made from B$_{10}$H$_{14}$, using FTIR and XPS

Understood the energetics and mechanisms of boron deposition and doping of carbon using B$_{10}$H$_{14}$

Put into operation a large-scale H$_2$ sorption tank for non-equilibrium flow and thermal management measurements