Design of Novel Multi-Component Metal Hydride-Based Mixtures for Hydrogen Storage

C. Wolverton (PI), H. Kung
Northwestern University

V. Ozolins
UCLA

A. Sudik, J. Yang
Ford Motor Company

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

Timeline
• Project Start Date: 9/1/08 (Funding started Feb. 09)
• Project End Date: 8/31/13
• ~60% complete

Budget
• Total Budget: $2714K
 – DOE Share: $2160K
 – Contractors Share: $554K
• Funding for FY11: $200K
• Planned FY12: $400K

Barriers
• Barriers addressed
 – P. Lack of Understanding of Hydrogen Physisorption and Chemisorption
 – A. System Weight and Volume
 – E. Charging/Discharging Rates

Partners
• Northwestern University
• UCLA
• Ford Motor Company
• Project lead: Northwestern University
Relevance - Project Objectives

• Our project: Combine materials from distinct categories to form novel multicomponent reactions

• Examples of systems to be studied include mixtures of complex hydrides and chemical hydrides and novel multicomponent complex hydride materials and reactions
Approach

Our approach involves a powerful blend of:
1) H₂ Storage measurements and characterization, 2) State-of-the-art computational modeling, 3) Detailed catalysis experiments, 4) In-depth automotive perspective
Technical Accomplishments: Experimental Screening & Testing of Theoretical Predictions

Approach:
- Computation
- Materials Synthesis & Testing
- Catalyst Screening

Guiding Questions:
- Is there experimental evidence of a new reactant structure (e.g., Mg-B-N-H)?
- What is the experimentally observed desorption pathway?
- How do these results compare with predictions?

Experimental Objectives:
- Synthesize, characterize, and test promising storage reactions predicted by computation
- Interface with kinetics-focused work to provide materials of interest for catalysis studies and assist in detailed testing of catalyzed reactions.

Predicted Compositions of Interest

<table>
<thead>
<tr>
<th>Predicted Compositions of Interest</th>
<th>Experimental Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>(NH₄)₂B₁₂H₁₂</td>
<td>Material received from OSU (Zhao)</td>
</tr>
<tr>
<td>5Mg(BH₄)₂ + 2LiBH₄</td>
<td>Material prepared & experiments initiated</td>
</tr>
<tr>
<td>Mg(BH₄)₂</td>
<td>Deferred given existing literature data</td>
</tr>
<tr>
<td>Mg(BH₄)₂ + Mg(NH₂)₂</td>
<td>Material prepared & experiments initiated</td>
</tr>
<tr>
<td>5MgH₂ + MgB₁₂H₁₂</td>
<td>Deferred given existing literature data</td>
</tr>
</tbody>
</table>

= current experimental focus
$2\text{LiBH}_4 + 5\text{Mg(BH}_4\text{)}_2$: Desorption and Partial Reversibility

Partial reversibility observed.

Optimization of reversible conditions still TBD

(2000 psi/138 bar, 350 °C recharge)

Partial reversibility observed.
Optimization of reversible conditions still TBD
2LiBH₄ + 5Mg(BH₄)₂ : Phase Evolution

XRD indicates initially similar to physical mixture, evolution in 2-3 steps:

- ~200-250 °C : Mg(BH₄)₂ & (possibly) LiBH₄ consumption
- ~250-300 °C : Continued Mg(BH₄)₂ consumption, formation of MgB₂ or possibly MgH₂
- Possible 3rd step over 350 °C : continued MgB₂ formation, other unidentified phase?
Effect of 3 wt. % Co-activated carbon on the dehydrogenation of 2LiBH₄-5Mg(BH₄)₂

Gas-phase IR indicated no borane release from catalyzed hydride.

3 wt % Co-AC catalyst (70 wt.% catalyst) accelerated the rate of dehydrogenation.

CH₄

B-H stretching

No catalyst

AC

3 wt. % Co-AC

AC heated with H₂

A

A
LiBH$_4$ decomposition is observed below 250°C when catalyzed with carbon.
Phys. Mixture of 2 wt. % Ni-AC catalyst further facilitates dehydrogenation of LiBH$_4$.

- AC alone greatly enhanced LiBH$_4$ dehydrogenation.
- The more AC, the faster the rate.
- Addition of Ni further improved dehydrogenation kinetics.
- Future work includes using infusion technique.
LiBH\textsubscript{4} dehydrogenation
Model for Mass Transport

\[
\begin{align*}
(LiBH_4)\text{solid} & \rightarrow \frac{1}{12}(Li_2B_{12}H_{12})\text{solid} + \frac{5}{6}(LiH)\text{solid} + \frac{13}{12}(H_2)\text{gas} \\
& \rightarrow (B)\text{solid} + (LiH)\text{solid} + \frac{3}{2}(H_2)\text{gas}
\end{align*}
\]

1. \(LiBH_4: H_2 : LiH \rightarrow \text{equilibrium} \rightarrow C^1[\text{defects}]\)
2. \(LiBH_4: H_2 : Li_2B_{12}H_{12} \rightarrow \text{equilibrium} \rightarrow C^2[\text{defects}]\)

\[
\nabla C = \frac{C^1[\text{defects}] - C^2[\text{defects}]}{d}
\]

\[
J = -D\nabla C
\]
Native defect concentration gradient

\[J = -D \nabla C \]

The BH₃ vacancy has the largest concentration gradient.

But how about D?

Low-energy defects: H and Li vacancy pair

Low-energy defects: Li vacancy and interstitial pair
Can [BH$_3$] diffuse through LiBH$_4$?

After taking BH$_3$ from the original BH$_4$ negative unit, a negative H forms, which lies exactly at the original BH$_4$ position. The negative H does not combine to the neighboring BH$_4$ unit.

AlH$_3$ vacancy diffusion in sodium alanate: AlH$_3$ vacancy leaves a negative H. The H then combines with the neighboring AlH$_4$ unit, thus leaving space for the vacancy to diffusion.

Very different diffusion in borohydrides vs. alanates: Mass transport in LiBH$_4$ is very low.
Mg(NH₂)₂ + Mg(BH₄)₂: Desorption Quantification and Reversibility

- Ammonia release nearly undetectable
- The dangerous compounds diborane and borazine are not detected
- Mg(NH₂)₂ + Mg(BH₄)₂ exhibits a comparatively very low desorption onset (~180°C)

- Mg(NH₂)₂ + Mg(BH₄)₂ desorbed ~8.3 wt. % at 380 °C
 - No reversibility at 250°C or 380°C (computation also supports lack of reversibility)
Mg(NH$_2$)$_2$ + Mg(BH$_4$)$_2$: Phase Evolution

- XRD: Possible new RT phase, only 1 step observed at ~150 °C
 - Low temperature signal improved vs. prior work
 - Strongest peaks overlap with substrate, baseline is high – possibly some amorphous character?
Technical Accomplishments: Experimental Testing of Predicted Compounds

Previously, no known quarternary borohydride/amide compounds in Mg-B-N-H system

\[
\text{Mg(BH}_4\text{)}_2 + \text{Mg(NH}_2\text{)}_2 \rightarrow \text{MgBNH}_6
\]

<table>
<thead>
<tr>
<th>Mg(BH$_4$)(NH$_2$)</th>
<th>ΔE_{Static}</th>
<th>$\Delta H_{\text{ZPE}}^{T=0\text{K}}$</th>
<th>$\Delta H_{\text{ZPE}}^{T=300\text{K}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-9.75</td>
<td>-8.18</td>
<td>-8.63</td>
</tr>
</tbody>
</table>

New, predicted compound stable w.r.t. Mg(BH$_4$)$_2$ + Mg(NH$_2$)$_2$

Technical Accomplishments

product in the decomposition of Mg-B-N-H

The pDOS of the theoretically predicted MgBH$_4$NH$_2$ is in a good agreement with the experimental IR measurements.

The decomposition products contain part of Mg(BH$_4$)$_2$ and compounds including N-B-N linear cluster, such as Mg$_3$BN$_3$.

DOWNSELECT: End work on borohydride/amide combination (due to lack of reversibility and formation of B-N bonds in product).
All \([B_nH_m] \) intermediates have higher reaction energies than \(\text{MgB}_{12}\text{H}_{12}\). Only the reactions to \(\text{MgB}_2\text{H}_6\) and \(\text{Mg}_3(\text{B}_3\text{H}_6)_2\) are close to the \(\text{MgB}_{12}\text{H}_{12}\) convex hull. \(\text{Mg}_3(\text{B}_3\text{H}_6)_2\) is a metastable intermediate in the decomposition of \(\text{Mg}(\text{BH}_4)_2\).

Y. Zhang, et. al. submitted to J. Phys. Chem. C
3 wt.% Co-AC catalyst promotes dehydrogenation of \(\text{Mg(NH}_2\text{)}_2\text{–Mg(BH}_4\text{)}_2 \) and reduces \(\text{NH}_3 \) formation

- Co–AC catalyst showed a better kinetic improvement than TiCl\(_3\).

- Gas-phase IR indicated smaller \(\text{NH}_3 \) release from catalyzed hydride.
(NH4)2B12H12: Desorption and Reversibility

2(NH4)2B12H12 ↔ 4BN + B20H16 + 12H2 ↔ 4BN + 20B + 8H2

11.3 H2 wt%

- Ammonia release nearly undetectable, and diborane and borazine are not detected

- Partial reversibility (but degrading performance) under cycling at 350°C (2000 psi H2 recharge at 350°C)
 - Small sample size for (NH4)2(B12H12) due to limited quantity may exacerbate response
(NH₄)₂(B₁₂H₁₂): Phase Evolution

- XRD indicates some unidentified phases appearing
 - Initial signal matches pretty well with ICSD (NH₄)₂(B₁₂H₁₂) structure
 - Some BN possibly formed, see peaks disappearing – at end amorphous w/substrate
- In Situ IR indicates B-N stretch above ~300 °C
Collaborations

Pl’s/co-Pl’s

Chris Wolverton (Northwestern, lead)
Harold Kung (Northwestern)
Vidvuds Ozolins (UCLA, subcontract)
Andrea Sudik (Ford, no-cost collaborator)
Jun Yang (Ford, no-cost collaborator)

Outside Collaborators:

D. Siegel (U. Michigan)
E. Majzoub (UMSL)
G. Ceder, N. Marzari (MIT)
C. Brown (NIST)
T. Burrell (LANL)
T. Autrey (PNNL)
F.-C. Chuang (Nat’l Sun Yat-Sen U)
J. C. Zhao (OSU)
Future Plans

• Experimentally characterized storage properties/reactions of \((\text{NH}_4)_2\text{B}_{12}\text{H}_{12}\) and other predicted reactions; Optimize reversibility conditions for \(5\text{Mg}(\text{BH}_4)_2 + 2\text{LiBH}_4\) mixture

• Extend experimental catalyst studies to other predicted promising materials; explore optimal morphology of carbon/metal catalysts;

• Focus experimental efforts on rehydriding reactions/reversibility (subject to pressure limitations of experimental equipment)

• Focus computational efforts on kinetics, defects, diffusion/mass transport/hydrogen dissociation in promising predicted reactions

• Downselect decision: End work on borohydride/amide combinations (No reversibility from computational or experimental work; B-N bonds in product).
Summary – Technical Accomplishments

- H₂ desorption and decomposition pathways have been studied in
 - 5LiBH₄ + 2Mg(BH₄)₂ (~5.8 wt.% desorbed)
 - Mg(BH₄)₂ + Mg(NH₂)₂ (~8.3 wt.% desorbed)
 - (NH₄)₂B₁₂H₁₂ (~4.5 wt.% desorbed)
- Partial reversibility (~1-2.5 wt.%) found in 5LiBH₄ + 2Mg(BH₄)₂ and (NH₄)₂B₁₂H₁₂
- Proposed new metal-carbon catalyst: Tested on NaAlH₄, and applied to Mg(BH₄)₂ + Mg(NH₂)₂, 2LiBH₄+5Mg(BH₄)₂ and LiBH₄; Effective catalyst - lowers desorption temperature, improves dehydrogenation rate, and suppresses formation of borane and NH₃
- Downselect the mixed borohydride/amide systems as promising hydrogen storage material (lack of reversibility and B-N bonds in products)
- Predicted a new metastable Mg₃(B₃H₆)₂ intermediate in decomposition of Mg(BH₄)₂, but showed that recently-proposed Mg(B₃H₈)₂ is not stable.
- PEGS+DFT combined of experimental measurements is used in unique way to solve amorphous AlB₄H₁₁ polymeric structure (w/ JC Zhao)
- Using the predictive models of defects, kinetics of mass transport: mass transport in LiBH₄ is very low (much lower than that in NaAlH₄)
Technical Accomplishments: Experimental Testing of Predicted Reactions

\[5\text{Mg(BH}_4\text{)}_2 + 2\text{LiBH}_4 \xrightarrow{-29 \, ^\circ\text{C}} \text{Li}_2\text{B}_{12}\text{H}_{12} + 5\text{MgH}_2 + 13 \, \text{H}_2 \quad 8.4 \text{ wt.\% H}_2 \]

Metal NPs supported on activated carbon (AC) and good catalyst-hydride contact facilitate hydride dehydrogenation

- Catalyst to hydride ratio maintained at 0.7 while varying Co-AC and AC ratio in the catalyst.
- The more Co-AC, i.e., the more Co, the faster the dehydrogenation kinetics

- 70 wt.% Co-AC catalyst but vary Co loading on the carbon support.
- Ball-milled hydride is in much closer contact with carbon catalyst and shows accelerated dehydrogenation kinetics
Model depicting the metal/carbon catalyst facilitated dehydrogenation of complex hydride

Effect of carbon based catalyst on the dehydrogenation of different hydrides:

- Mg(NH$_2$)$_2$–Mg(BH$_4$)$_2$
- Mg(BH$_4$)$_2$–LiBH$_4$
- LiBH$_4$
Technical Accomplishments: New Theoretical Predictions

• Decomposition of Mg(BH₄)(NH₂)
• New borohydride compounds
 – Mg₃(B₃H₆)₂
 – AlB₄H₁₁
• Diffusion & mass transport (required for fast kinetics)
Recent experiments

$[\text{B}_3\text{H}_8]^-$ intermediate

$\frac{1}{3}\text{Mg(B}_3\text{H}_8)^2+\frac{2}{3}\text{MgH}_2+\frac{2}{3}\text{H}_2$

ΔH static (kJ/mol)

1/3Mg(B$_3$H$_8$)$_2$ + 2/3MgH$_2$ + 2/3H$_2$

Mg(B$_3$H$_8$)$_2$ is not a stable intermediate in the decomposition of Mg(BH$_4$)$_2$.

PEGS-Mg(B$_3$H$_8$)$_2$

Space group: P-1 (2)
Technical Accomplishments
New metal borohydride: AlB$_4$H$_{11}$

In collaboration with Xuenian Chen and JiCheng Zhao (OSU)

- **AlB$_4$H$_{11}$ synthesis:**
 \[
 2\text{Al(BH}$_4$)_3+\text{B}_2\text{H}_6 \rightarrow 2\text{AlB}_4\text{H}_{11}+4\text{H}_2
 \]

- **AlB$_4$H$_{11}$ attractive properties**
 - High hydrogen content (13.5% H$_2$)
 - Moderate stability
 - Decomposition temperature ~125 °C
 - Endothermic dehydrogenation
 - Rehydrogenation at moderate conditions

- **Unknown AlB$_4$H$_{11}$ structure:** amorphous

Can we use PEGS+DFT to predict the structure? Or at least help interpret the experimental data?
Polymer chain is composed of Al, [BH₄], [B₃H₇] groups, which are confirmed by experimental NMR measurements.

PEGS+DFT, combined of experiment, used in unique way to solve amorphous polymeric structure.