Hydrogen Storage by Novel CBN Heterocycle Materials

Shih-Yuan Liu (Isy@uoregon.edu)
Department of Chemistry, University of Oregon
in collaboration with the University of Alabama

2012 Annual Merit Review
Washington, DC, May 17, 2012

This presentation does not contain any confidential or otherwise restricted information
Overview

Timeline

start date: September 2008
end date: March 2012
percent complete: 95%

Barriers

A. system weight and volume
C. efficiency
E. charging/discharging rates
R. regeneration process

Budget

total project funding: $1,440,614
DOE share: $1,149,085
UO share: $291,529
FY 2011 funding: $300,000
Planned FY 2012 funding: $145,653

Project Collaborators

THE UNIVERSITY OF ALABAMA Prof. David Dixon
Project Objectives - Relevance

Develop CBN heterocycles as novel hydrogen storage materials:

- liquid-phase
- gravimetric density (> 5.5 wt. %)
- volumetric density (> 40 g H₂/L system)
- thermodynamics (H₂ absorption and desorption)
- regeneration (reversibility)
- 2017 DOE targets for vehicular applications + near-term market applications

Specific Phase II Tasks

1) synthesize parent charged fuel of CBN heterocycle material (1); completed 1/22/2011
* 2) optimize CBN heterocycle materials synthesis; completed 10/20/2011
* 3) obtain experimental thermodynamic data for model CBN heterocycles; completed 7/21/2011
 4) formulate materials as liquids; completed 1/22/2011
* 5) develop/identify conditions to optimize H₂ desorption from CBN materials; 90% complete
* 6) develop/identify conditions for regeneration of the spent fuels; 90% complete
The CBN Heterocycle Approach

couple \textit{exothermic} \text{H}_2 desorption from \textit{BN} with \textit{endothermic} \text{H}_2 desorption from \textit{CC} in a \textit{cyclic} system to achieve optimal thermodynamics for the overall \text{H}_2 absorption/desorption process.

Overall thermodynamics is conducive to reversibility.
A Well-Defined Molecular Approach

- The materials remain well-defined molecular species throughout the lifecycle, from fully charged fuel to the spent fuel.
- Potential **advantages** of well-defined nature include:
 - no involvement of insoluble polymeric materials
 - better characterization of reaction products and reaction processes
 - facilitates computational and mechanistic studies
 - facilitates formulation as liquids
- Potential **disadvantages** of well-defined molecular approach include:
 - lower storage capacity
 - for single-component systems:
 - formation of polymers or larger networks \rightarrow higher capacity (e.g., AB), solids

trade off between capacity, solid phase vs. liquid phase, well-defined species
Previous Progress (Task 1, Completed)
Synthesis of Parent

Wei Luo

Synthesis of the parent molecule was successful.
Previous Progress (Task 4, Completed)

Formulate Materials as Liquids

Potential capacities, assuming 3 equivalent H₂ release:

<table>
<thead>
<tr>
<th>Material</th>
<th>Neat Material</th>
<th>THF Solution</th>
<th>Et₂O Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>t-Bu</td>
<td>mp: 96-98 °C</td>
<td>sol. (g/L): 284 ± 28</td>
<td>sol. (g/L): 84.4 ± 4</td>
</tr>
<tr>
<td></td>
<td>d (kg/L): 0.61 ± 0.07</td>
<td>d (kg/L): "0.89"</td>
<td>d (kg/L): "0.71"</td>
</tr>
<tr>
<td></td>
<td>vol. (g H₂/L): 25</td>
<td>vol. (g H₂/L): 11.7 g</td>
<td>vol. (g H₂/L): 3.47</td>
</tr>
<tr>
<td></td>
<td>wt(%): 4.3</td>
<td>wt(%): 1.3</td>
<td>wt(%): 0.4</td>
</tr>
<tr>
<td>Me</td>
<td>mp: 72-73 °C</td>
<td>sol. (g/L): 292 ± 5</td>
<td>sol. (g/L): 106 ± 18</td>
</tr>
<tr>
<td></td>
<td>d (kg/L): 0.87 ± 0.08</td>
<td>d (kg/L): "0.89"</td>
<td>d (kg/L): "0.71"</td>
</tr>
<tr>
<td></td>
<td>vol. (g H₂/L): 53</td>
<td>vol. (g H₂/L): 17.8</td>
<td>vol. (g H₂/L): 6.5</td>
</tr>
<tr>
<td></td>
<td>wt(%): 6.1</td>
<td>wt(%): 2.0</td>
<td>wt(%): 0.73</td>
</tr>
<tr>
<td>NH₂</td>
<td>mp: 62-63 °C</td>
<td>sol. (g/L): 434 ± 20</td>
<td>sol. (g/L): 347 ± 30</td>
</tr>
<tr>
<td></td>
<td>d (kg/L): 1.00 ± 0.05</td>
<td>d (kg/L): "0.89"</td>
<td>d (kg/L): "0.71"</td>
</tr>
<tr>
<td></td>
<td>vol. (g H₂/L): 70</td>
<td>vol. (g H₂/L): 30.7</td>
<td>vol. (g H₂/L): 25</td>
</tr>
<tr>
<td></td>
<td>wt(%): 7.1</td>
<td>wt(%): 3.4</td>
<td>wt(%): 3.1</td>
</tr>
</tbody>
</table>
New Progress (Task 2, Completed)
Optimize Materials Synthesis

First generation (2009):
6 steps, 9% overall yield

Second generation + optimization (2011):
3 steps, 51% overall yield

First-fill synthesis was improved.
New Progress (Task 3, Completed)

Experimental Thermodynamic Analysis –

Discovery of suitable catalytic reaction conditions for calorimetry. Experimental thermodynamic data obtained and calibrated against theoretical values.

numbers in (): experimental values measured at 333K in kcal/mol
numbers in []: G3(MP2) values at 298K in kcal/mol

New Progress (Task 5)

H$_2$ Desorption from BN is Facile

H$_2$ desorption occurs thermally at ~150 °C, catalytically at < 80 °C for all three reactions.

Reviewer 3 is right! Trimerization occurs and needs to be considered.

G3(MP2), 298K:

$\Delta H = -83.1; \Delta G = -107.3$ kcal/mol trimer

$\Delta H = -27.7; \Delta G = -35.8$ kcal/mol monomer

$\Delta H = -13.9; \Delta G = -17.9$ kcal/mol H$_2$
New Progress (Task 5)
Screening of Catalysts for Trimerization

- Neutral Rh(I) catalyst are most active (5 mol%, 15 min); entries 20 and 22.
- CoCl$_2$ is the most active (10 mol%, 30 min) among first-row transition metals that we screened in Table 1 (Entry 13).
- Most catalysts effect the trimerization.
- Without a catalyst, no reaction occurs after 3 hrs at 80 °C.

Table 1: Catalyst and condition screening for dehydrogenation of 1

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Loading (mol%)</th>
<th>Time(min)</th>
<th>% Yield Int</th>
<th>% Yield T</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CoCl$_2$</td>
<td>10</td>
<td>60</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>(dppe)NiCl$_2$</td>
<td>10</td>
<td>60</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>Cr(MeCN)$_3$(CO)$_3$</td>
<td>10</td>
<td>60</td>
<td>N/R*</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>[Cl(cod)Ir]$_2$</td>
<td>10</td>
<td>60</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>[Cl(cod)Rh]$_2$</td>
<td>10</td>
<td>60</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>[(C$_2$H$_2$)$_2$ClRh]$_2$</td>
<td>10</td>
<td>60</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>7</td>
<td>Cp*RuCl$_2$</td>
<td>10</td>
<td>60</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>(cod)$_2$RhBF$_4$</td>
<td>10</td>
<td>60</td>
<td>N/R*</td>
<td>100</td>
</tr>
<tr>
<td>9</td>
<td>(PPh$_3$)$_2$NiCl$_2$</td>
<td>5</td>
<td>60</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>[(nbd)ClRh]$_2$</td>
<td>5</td>
<td>60</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>11</td>
<td>RuCl$_3$</td>
<td>10</td>
<td>60</td>
<td>N/R*</td>
<td>100</td>
</tr>
<tr>
<td>12</td>
<td>(dppe)NiCl$_2$</td>
<td>5</td>
<td>30</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>13</td>
<td>CoCl$_2$</td>
<td>10</td>
<td>30</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>14</td>
<td>[Cl(cod)Ir]$_2$</td>
<td>5</td>
<td>30</td>
<td>20</td>
<td>80</td>
</tr>
<tr>
<td>15</td>
<td>[Cl(cod)Rh]$_2$</td>
<td>5</td>
<td>30</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>16</td>
<td>Cp*RuCl$_2$</td>
<td>5</td>
<td>30</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>17</td>
<td>(PPh$_3$)$_2$NiCl$_2$</td>
<td>5</td>
<td>30</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>18</td>
<td>[(nbd)ClRh]$_2$</td>
<td>5</td>
<td>30</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>19</td>
<td>CoCl$_2$</td>
<td>10</td>
<td>15</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>20</td>
<td>[Cl(cod)Rh]$_2$</td>
<td>5</td>
<td>15</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>21</td>
<td>Cp*RuCl$_2$</td>
<td>5</td>
<td>15</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>22</td>
<td>[(nbd)ClRh]$_2$</td>
<td>5</td>
<td>15</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

* N/R means no reaction or mix of undesired products
New Progress (Task 5)

FeCl$_2$ Acts as Catalyst for Trimerization

- Conditions: 80 °C in toluene solution.
- Release of 2 equiv. H$_2$ corresponds to complete conversion.

- FeCl$_2$ is cheap ($0.30 / kg$)
- H$_2$ desorption behavior is catalyst dependent.
- Mechanistic details still under investigation.
New Progress (Task 5)
Progress toward Removing H_2 from CC

Overall potential:
9.4 wt.%; 94 g H_2/L

G3(MP2), 298K:
$\Delta H = +5.9$ kcal/mol monomer
$\Delta G = -19.3$ kcal/mol monomer
$\Delta H = +1.5$ kcal/mol H_2
$\Delta G = -4.8$ kcal/mol H_2
solid phase (single component)

Preliminary attempts using transition metal catalysts:

Keep in mind that this reaction is endothermic:
$\Delta H \sim 3 \times 30$ kcal/mol product.

by GC analysis:
- complete conversion of the starting material
- significant formation of the desired product

Jacob Ishibashi
New Progress (Task 6)
Progress toward Regeneration

Conversion of the spent fuel trimer T back to the charged fuel 1 was accomplished.

Preliminary investigation using hydrazine did not lead to regeneration.
Formic acid:
- produced ~700,000 tons / year (commodity chemical)
- relatively cheap at $0.8-1.2 / kg
- potential for use as near-term solution for regeneration

Formic acid serves as a digestion agent and proton source to break up the trimer.

NMR indicates clean reaction. Loss in yield may be due to isolation procedures.
Summary of Accomplishments: Material Synthesis and Properties

1. Synthesized family of novel CBN-heterocyclic materials, including parent:

 \[
 \begin{align*}
 & \text{H}_2 \text{N-} \text{t-} \text{Bu} \quad \text{BH}_2 & \quad \text{H} \quad \text{Me} \quad \text{BH}_2 & \quad \text{H} \quad \text{NH}_2 \quad \text{BH}_2 \\
 & \text{4.3 wt\% H}_2 & \quad \text{6.1 wt\% H}_2 & \quad \text{7.1 wt\% H}_2 \quad \text{3 equiv. release} \\
 & \text{9.5 wt\% H}_2 & \quad \text{4 equiv. release}
 \end{align*}
 \]

1. Improved material synthesis: all 3 steps, > 50% overall yield from commercially available starting materials

2. Completed experimental thermodynamic measurements to corroborate computational results (in kcal/mol):

 \[
 \begin{align*}
 & \text{H}_2 \text{N-} \text{t-} \text{Bu} \quad \text{BH}_2 \quad \xrightarrow{\text{—3 H}_2} \quad \text{H} \quad \text{N-} \text{t-} \text{Bu} \quad \text{BH} \\
 & \Delta H = 25.2 \text{ G3(MP2)} \\
 & \Delta H = 28.6 \text{ experimental}
 \end{align*}
 \]

3. Formulated materials as liquids, determined H\(_2\) capacity in solution
Summary of Accomplishments: H₂ Release and Regeneration

5. Hydrogen release (materials are thermally stable beyond their melting points):
 a. Loss of H₂ from B–N is facile, numerous hetero- and homogeneous catalysts promote loss of H₂ at ≤ 80 °C
 b. Trimerization of parent molecule occurs, releasing 2 equiv. H₂ per monomer
 c. Proof-of-concept success for H₂ desorption from C–C

6. Regeneration of spent fuel material has been demonstrated:
Toward a Liquid Fuel

<table>
<thead>
<tr>
<th>Neat Material</th>
<th>THF Solution</th>
<th>Et<sub>2</sub>O Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>mp: 96-98 °C</td>
<td>sol. (g/L): 284 ± 28</td>
<td>sol. (g/L): 84.4 ± 4</td>
</tr>
<tr>
<td>d (kg/L): 0.61 ± 0.07</td>
<td>d (kg/L): "0.89"</td>
<td>d (kg/L): "0.71"</td>
</tr>
<tr>
<td>vol. (g H<sub>2</sub>/L): 25</td>
<td>vol. (g H<sub>2</sub>/L): 11.7 g</td>
<td>vol. (g H<sub>2</sub>/L): 3.47</td>
</tr>
<tr>
<td>wt.(%): 4.3</td>
<td>wt(%): 1.3</td>
<td>wt(%): 0.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Neat Material</th>
<th>THF Solution</th>
<th>Et<sub>2</sub>O Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>mp: 72-73 °C</td>
<td>sol. (g/L): 292 ± 5</td>
<td>sol. (g/L): 106 ± 18</td>
</tr>
<tr>
<td>d (kg/L): 0.87 ± 0.08</td>
<td>d (kg/L): "0.89"</td>
<td>d (kg/L): "0.71"</td>
</tr>
<tr>
<td>vol. (g H<sub>2</sub>/L): 53</td>
<td>vol. (g H<sub>2</sub>/L): 17.8</td>
<td>vol. (g H<sub>2</sub>/L): 6.5</td>
</tr>
<tr>
<td>wt.(%): 6.1</td>
<td>wt(%): 2.0</td>
<td>wt(%): 0.73</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Neat Material</th>
<th>THF Solution</th>
<th>Et<sub>2</sub>O Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>mp: 62-63 °C</td>
<td>sol. (g/L): 434 ± 20</td>
<td>sol. (g/L): 347 ± 30</td>
</tr>
<tr>
<td>d (kg/L): 1.00 ± 0.05</td>
<td>d (kg/L): "0.89"</td>
<td>d (kg/L): "0.71"</td>
</tr>
<tr>
<td>vol. (g H<sub>2</sub>/L): 70</td>
<td>vol. (g H<sub>2</sub>/L): 30.7</td>
<td>vol. (g H<sub>2</sub>/L): 25</td>
</tr>
<tr>
<td>wt.(%): 7.1</td>
<td>wt(%): 3.4</td>
<td>wt(%): 3.1</td>
</tr>
</tbody>
</table>

It appears the smaller the molecule the lower the melting point.
A Single-Component Liquid H₂ Storage Material

Synthesis of a liquid material without phase change was accomplished.

Synthesis:

\[
\text{Me} \sim \sim \text{N(TMS)}_2 \xrightarrow{\text{BH}_3 \cdot \text{Et}_3\text{N}} \xrightarrow{160 \, ^\circ \text{C, } 48 \text{h}} \left[\begin{array}{c} \text{Me} \sim \sim \text{B} \sim \sim \text{NH}_2 \\
\text{Me} \sim \sim \text{BH}_2 \end{array} \right] \xrightarrow{1) \text{KH, THF}} \xrightarrow{2) \text{HF} \cdot \text{pyr}} \text{Me} \sim \sim \text{NH}_2 \sim \sim \text{BH}_2
\]

Highlighted in:

Fe-Catalyzed H₂ Release (Neat Liquid)

Catalyst particles (black) are on the surface of a magnetic stir bar.

Dehydrogenation is feasible at larger scales as a neat liquid.

Collaborations

Project Collaborators

computational studies of H$_2$ desorption pathways of cyclic CBN materials, evaluation of thermodynamics and energetics

experimental mechanistic studies of H$_2$ absorption/desorption to/from cyclic CBN materials, thermodynamic measurements using reaction calorimetry, H$_2$ charge/discharge characteristics
Project Summary

Relevance: development of novel hydrogen storage materials with desirable storage capacity and thermodynamics for potential reversible H₂ absorption and desorption

Approach: coupling of exothermic H₂ desorption from BN with endothermic H₂ desorption from CC in a cyclic system to achieve optimal thermodynamics for H₂ absorption/desorption; distinct from amine-borane and cyclic organic materials

Progress: • completed synthetic optimizations (Task 2)
• completed experimental thermodynamic analysis (Task 3)
• discovered FeCl₂ as effective catalyst for H₂ desorption from BN (Task 5)
• preliminary discovery of dehydrogenation from CC (Task 5)
• completed regeneration of trimer spent fuel (Task 6)
• discovered formic acid as a digestion agent (Task 6)
• discovered a single-component liquid-phase storage material

Collaborations: active partnership with UA and PNNL
Technical Backup Slides
PNNL M-H Regeneration Route

Use acid-base chemistry to drive an uphill process