Systems Analysis
- Session Introduction -

Fred Joseck
GOAL: Provide system-level analysis to support infrastructure development and technology readiness by evaluating technologies and pathways, guiding the selection of RD&D technology approaches/options, and estimating the potential value of RD&D efforts

OBJECTIVES

- Assess the Life Cycle Analysis benefits of hydrogen and fuel cells for diverse applications
- Quantify the benefits of integrating hydrogen fuel production with stationary fuel cell power generation
 - Evaluate the potential for biogas, landfill gas, and stranded hydrogen streams
- Evaluate fueling station costs for early vehicle penetration
- Evaluate the use of hydrogen for energy storage and as an energy carrier
- Evaluate socio-economic benefits of the Program such as job creation
Future Market Behavior
- Understanding of drivers of fuel and vehicle markets needed for long-term projections.
- Models need to adequately address interactions - hydrogen/vehicle supply and demand.

Data availability, accuracy and consistency; Assumptions & Guidelines
- Analysis results depend on data sets and assumptions used.
- Large number of stakeholders and breadth of technologies - difficult to establish consistency.

Coordination of Analytical Capability
- Analytical capabilities segmented by Program element, organizationally by DOE office, and by performers/analysts.
Analysis Portfolio

A variety of analysis methodologies are used in combination to provide a sound understanding of hydrogen and fuel cell systems and developing markets, as well as quantifying benefits, impacts, and risks of different hydrogen and fuel cell systems.

MARKETS/BENEFITS & POLICY ANALYSIS
- Energy Market Analysis

TECHNOLOGY ANALYSIS
- Technical Feasibility & Cost Analysis
- Environmental Analysis

IMPLEMENTATION & IMPACT ANALYSIS
- Resource Analysis
- Delivery Analysis
- Infrastructure Development & Financial Analysis

Systems Analysis url: http://www.hydrogen.energy.gov/systems_analysis.html
DOE’s Fuel Cell Technologies Office model and tool portfolio is comprehensive and multi-functional.
Analysis Project Overview

Systems Analysis Process Achieves Consistent and Transparent Results

Analysis Framework
- Systems Analysis Plan
- HyARC
- Systems Analysis
- MYRD&D Plan
- Data: (EIA 2010 AEO, etc.)

Models & Tools
- Component models
- Integrated models
- Macro-System Model

Studies & Analysis
- Market Transformation Analysis
- Long-term Analysis
- Environmental Analysis
- Cross-cut Analysis

Sub-programs
- DOE Offices
- Internal & External Reviews

Outputs & Deliverables
- Recommendations & Reports
- Inputs to Plans
- Validated Results

Other Internal & External Interactions
- FCT Subprograms
 - Fuel Cell R&D
 - Hydrogen Fuel R&D
 - Storage R&D
 - Crosscutting

- DOE Offices
 - Fossil Energy
 - Nuclear Energy
 - Science

- Internal/External Reviews
 - NAS
 - AMR

Model/Analysis Application Matrix

FCTO model and tool portfolio well equipped to tackle all the analysis tasks

<table>
<thead>
<tr>
<th>Analysis Category</th>
<th>Technology Analysis</th>
<th>Implementation & Impact Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Models</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analysis Type</td>
<td>Models</td>
<td></td>
</tr>
<tr>
<td>H₂A Production Cost Model¹</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>H₂A Delivery Cost Model¹</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>DTI/SA HyPRO¹</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Jobs Model (ANL)¹</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SERA (NREL Infrastructure)¹</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>HyDRA¹</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Autonomie</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>HyTrans¹</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>MA3T (ORNL)¹</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>GREET¹</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Macro-System Model (MSM) ¹</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>RCF Agent Based Model¹</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>NEMS</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>MARKAL</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>FC Power Model</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Notes:

1. The models/projects funded by Systems Analysis are referenced with a “¹”.
2. A hydrogen module is being added to the NEMS model in 2006.
3. Risk analysis is being incorporated in the models. The GREET Model has risk analysis capabilities.
4. The primary analysis focus of the models are illustrated in the matrix. However, the models are multi-functional and can be applied for other analyses in the matrix.

Legend

- ✓ Models and Tools available for analysis
Analysis Process Flow

A portfolio of models and tools with transparent data for studies is used to influence Program direction and input.

<table>
<thead>
<tr>
<th>Input</th>
<th>Studies & Analyses</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>Ezarly Market Analysis</td>
<td>Program</td>
</tr>
<tr>
<td>• EIA</td>
<td>Life-cycle GHG, Petroleum, and Cost Analysis</td>
<td>• Potential H₂ demand</td>
</tr>
<tr>
<td>• HyARC</td>
<td>Hydrogen Threshold Cost</td>
<td>• Required H₂ Cost for R&D targets</td>
</tr>
<tr>
<td>Stakeholder Input</td>
<td>Vehicle Penetration Analysis</td>
<td>• Benefits of the technologies</td>
</tr>
<tr>
<td>• Workshops</td>
<td>Infrastructure Analysis</td>
<td>• Potential cost reduction</td>
</tr>
<tr>
<td>• Requests for Information (RFIs)</td>
<td></td>
<td>Sub-programs</td>
</tr>
<tr>
<td>Models & Tools</td>
<td></td>
<td>• Resources needs for H₂ production</td>
</tr>
<tr>
<td>• H₂A</td>
<td></td>
<td>• Establish H₂ production & delivery targets</td>
</tr>
<tr>
<td>• HDSAM</td>
<td></td>
<td>• GHG and Petroleum Reduction Benefits</td>
</tr>
<tr>
<td>• Autonomie</td>
<td></td>
<td>• Technology gaps</td>
</tr>
<tr>
<td>• MA3T</td>
<td></td>
<td>Program</td>
</tr>
<tr>
<td>• HyPRO</td>
<td></td>
<td>• Potential H₂ demand</td>
</tr>
<tr>
<td>• HyTRANS</td>
<td></td>
<td>• Required H₂ Cost for R&D targets</td>
</tr>
<tr>
<td>• SERA</td>
<td></td>
<td>• Benefits of the technologies</td>
</tr>
<tr>
<td>• MARKAL</td>
<td></td>
<td>• Potential cost reduction</td>
</tr>
<tr>
<td>• GREET</td>
<td></td>
<td>Sub-programs</td>
</tr>
<tr>
<td>• MSM</td>
<td></td>
<td>• Resources needs for H₂ production</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Establish H₂ production & delivery targets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• GHG and Petroleum Reduction Benefits</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Technology gaps</td>
</tr>
</tbody>
</table>
Systems Analysis Budget

Focus: Determine technology gaps, economic/jobs potential, and benefits of key technology advances; and quantify 2013 technology advancement

FY 2013 Appropriation= $3.0 M

FY 2014 Request = $3.0 M

EMPHASIS

- Update and refine models for program analysis using cost, performance and environmental (emissions, etc.) information.
- Continue life-cycle analyses of cost, greenhouse gas emissions, petroleum use and criteria emissions, and impacts on water use.
- Assess gaps and drivers for early market infrastructure cost for transportation and power generation applications.
- Assess programmatic impacts on market penetration, job creation, return on investment, and opportunities for fuel cell applications in the near term.

* Subject to appropriations, project go/no go decisions and competitive selections. Exact amounts will be determined based on R&D progress in each area and the relative merit and applicability of projects competitively selected through planned funding opportunity announcements (FOAs).
Infrastructure Analysis: Single Station Cash Flow Analysis

Hydrogen Fueling Station positive cash flow is sensitive to station utilization

500 kg per day Station Financial Analysis

Cash Flow for H2 Transition Scenario
Preliminary Analysis

Source: UCDavis

Assumptions:
• Delivered H₂ @ $6/gge
• H₂ selling price $10/gge
• H₂ station cost $1.5 million
• Full station utilization in 4 yrs.

• Loan 5.5% for 10 yrs.
• 700 bar dispensing
• O&M: $100,000

Single 500 kg/d Hydrogen Station with Compressed Hydrogen delivery from Central production facility
Resource Analysis

The U.S. has an abundance of regionally distributed domestic resources to produce renewable hydrogen

- Renewable hydrogen can be produced from a variety of domestic resources including solar, wind, biomass and biogas.
- Abundance of resources for hydrogen production quantified below:

 Solar > Wind > Biomass and Biogas (Source: NREL)

- Renewable resources are regionally concentrated which limit the distribution of the resultant hydrogen production to urban demand centers.
- Each resource faced with barriers such ecological, physical and environmental restrictions.

Landfill Gas Resource

<table>
<thead>
<tr>
<th>Resource</th>
<th>Quantity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net CH₄ Potential</td>
<td>1,600 thousand tonnes</td>
<td>Data Source: EPA’s Landfill Methane Outreach Program [2]</td>
</tr>
<tr>
<td>Net H₂ Potential</td>
<td>493 thousand tonnes</td>
<td>Gross Availability: 10,500 thousand tonnes, ~2,000 records with waste data</td>
</tr>
<tr>
<td>FCEV Supported</td>
<td>2.8 million vehicles</td>
<td>Net Availability: 445 candidate* sites identified by EPA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Methane range: 40%-60% methane by volume of biogas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>* Candidate sites must meet certain waste requirements and have no operational or under construction energy project</td>
</tr>
</tbody>
</table>
Vehicle Penetration Analysis: Impact of Driving Range and Consumer Choice on FCEV Penetration

Optimal Delivered Hydrogen Pressure to the vehicle may fall between 350 and 700 bar depending on the tradeoff between consumer refueling convenience, time value and infrastructure costs.

Optimal fueling pressure (vehicle range) is more sensitive to consumer’s value of time, incremental station cost, and number of FCEVs available to obtain fuel (hydrogen).

Note: Analysis assumes the vehicle tank is designed for 700 bar hydrogen pressure.
On a life-cycle basis, analysis capabilities will be added to GREET to assess water consumption for hydrogen production pathways.

GREET = the Greenhouse gases, Regulated Emissions, and Energy use in Transportation Model

- GREET LCA analysis capabilities are being expanded to include fuel cycle water consumption for hydrogen and other fuels.
- Model will be able to assess water consumed on a “per gge” and “per mile” basis.

Source: ANL
Technology Analysis: Life Cycle Analysis of On-Board Storage Options

Onboard storage represents 3-5% of total LCA GHG emissions of compressed GH2, LH2 and MOF-5 pathways

* Assumed 60 mi/kg H$_2$ fuel economy for FCEVs, and 160,000 lifetime VMT

† Assumed electricity from US grid mix for H$_2$ liquefaction

Hydrogen for the pathways assumed to be produced from central steam methane reforming of natural gas.

Source: ANL
Biorefineries require electricity, heat and hydrogen that can be supplied by Combined Heat, Hydrogen and Power (CHHP) Fuel Cells.

The MCFC CHHP integration with a biorefinery case is cost-competitive when the electricity to natural gas cost ratio is high or there are concerns about electricity or hydrogen price volatility.

Base Case: No Fuel Cell

<table>
<thead>
<tr>
<th>Feedstock Cost ($/dry tonne)</th>
<th>$50</th>
<th>$75</th>
<th>$100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen Price ($/gge)</td>
<td>$1.25</td>
<td>$1.50</td>
<td>$2.50</td>
</tr>
<tr>
<td>Plant FCi ($MM)</td>
<td>$8.00</td>
<td>$172</td>
<td>+30%</td>
</tr>
<tr>
<td>Electricity Price ($/kWh)</td>
<td>$0.03</td>
<td>$0.054</td>
<td>$0.10</td>
</tr>
<tr>
<td>Fuel Gas Value ($/MMBtu)</td>
<td>$0.03</td>
<td>$5.00</td>
<td>+30%</td>
</tr>
</tbody>
</table>

MCFC CHHP Case

<table>
<thead>
<tr>
<th>Feedstock Cost ($/dry tonne)</th>
<th>$50</th>
<th>$75</th>
<th>$100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen Price ($/kg)</td>
<td>$1.50</td>
<td>$203</td>
<td>$2.50</td>
</tr>
<tr>
<td>Plant FCi ($MM)</td>
<td>$8.00</td>
<td>$0.054</td>
<td>$0.10</td>
</tr>
<tr>
<td>Fuel Gas Value ($/MMBtu)</td>
<td>$1.25</td>
<td>$5.00</td>
<td>$2.00</td>
</tr>
<tr>
<td>FC System Installed Cost ($MM)</td>
<td>$8.00</td>
<td>$20.2</td>
<td>$2.00</td>
</tr>
<tr>
<td>Natural Gas Price ($/MMBtu)</td>
<td>$2.00</td>
<td>$5.00</td>
<td>+30%</td>
</tr>
<tr>
<td>Federal Tax Credit (%)</td>
<td>$2.00</td>
<td>$8.00</td>
<td>0%</td>
</tr>
<tr>
<td>Electricity Price ($/kWh)</td>
<td>$0.03</td>
<td>$0.10</td>
<td>insensitive</td>
</tr>
</tbody>
</table>

Levelized cost of biofuels, $/gal.
Programmatic Analysis: Socio-Economic Benefits of FCTO ARRA Projects Impact on Employment

~1300 Domestic Job-years Created/Retained as a result of FCTO Funding for ARRA Projects for Fuel Cell Forklifts and Backup Power

Domestic Employment from ARRA-Deployed FC Backup Power

- ~950 total job-years created/retained
- ~45% from FC & H2 infrastructure installation
- Induced employment = 44% of BUP employment
- BUP = 73% total ARRA-related FC employment

NEXT STEPS

- ANL-RCF is expanding the JOBS FC model to include module for analysis of infrastructure development employment impacts.
- Beta test of infrastructure planned for end of 2013.
- Jobs model module will enable analysis of gross and net jobs, and revenues generated from hydrogen infrastructure installation and investment. See ANL JOBS FC website: http://JOBSFC.es.anl.gov
Summary

- Diverse portfolio and expanded capability of models developed by the Systems Analysis sub-program are enabling analysts to address barriers to technology development and commercialization.

- Emphasis on *early market and infrastructure analysis*:
 - Focus on utilizing biogas as a resource for an alternative fuel.
 - Comprehensive approach to evaluate a portfolio of fuel cell applications for light duty transportation, stationary generation, backup power and material handling equipment, and the electric sector to realize economic, environmental and societal benefits.

- Plans continue to enhance existing models and expand analyses.

<table>
<thead>
<tr>
<th>FY 2013</th>
<th>FY 2014</th>
<th>FY 2015</th>
<th>FY 2016-2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete analysis of job growth for MHE</td>
<td>Complete analysis of resources/ feedstock, production/ delivery and existing infrastructure for technology readiness</td>
<td>Provide analysis of Program milestones and technology readiness goals—including risk analysis, independent reviews, financial evaluations, and environmental analysis—to identify technology and risk mitigation strategies</td>
<td>Complete analysis of Program technology performance and cost status and potential to enable use of fuel cells for a portfolio of commercial applications</td>
</tr>
<tr>
<td>Complete analysis of biogas resources for H₂ production and stationary power generation</td>
<td>Complete analysis of job growth for distributed power generation</td>
<td></td>
<td>Complete analysis of H₂ quality impact on H₂ production cost and FC cost for long-range technologies and technology readiness</td>
</tr>
<tr>
<td>Complete analysis for fuel cell CHP application with bio-fuels</td>
<td>Complete infrastructure analysis for H2USA</td>
<td></td>
<td>Complete environmental analysis of impacts for H₂ scenarios</td>
</tr>
<tr>
<td>Complete coordinated well-to-wheel and Total-Cost-of-Ownership (TCO) with Vehicles and Biomass Technologies Offices</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Systems Analysis is an integral component of EERE and the Fuel Cell Technologies Program

The Systems Analysis sub-program will

- Identify the synergies of hydrogen and fuel cells with other fuels and technologies to minimize barriers to market entry
- Confirm the technology advances needed to reduce infrastructure cost and show the similarity among costs for hydrogen fueling infrastructure and conventional or other alternative fueling infrastructure
- Assess impact of domestic and international growth in hydrogen demand on renewable resource availability and cost
- Assess water consumption of hydrogen production from natural gas and renewable resources
- Show the socio-economic benefits of various fuel cell applications
Participating Organizations

- **Systems Analysis**
 - ANL
 - NREL
 - ORNL
 - PNNL
 - SNL
 - UC – Davis
 - RCF Economic & Financial Consulting, Inc.
 - Navigant/Pike Research
For More Information

Systems Analysis Team

Fred Joseck, Team Leader
202-586-7932
Fred.joseck@ee.doe.gov

Tien Nguyen
202-586-7387
tien.nguyen@ee.doe.gov

Joe Stanford
202-586-6757
Joseph.stanford@ee.doe.gov

Monterey Gardiner
202-586-1758
monterey.gardiner@ee.doe.gov

Jeni Keisman (AAAS Fellow)
202-586-5153
Jeni.keisman@ee.doe.gov

Support:
Elvin Yuzugullu (SRA)

Kathleen O’Malley (SRA)
Session Instructions

- This is a review, not a conference.
- Presentations will begin precisely at the scheduled times.
- Talks will be 20 minutes and Q&A 10 minutes.
- Reviewers have priority for questions over the general audience.
- Reviewers should be seated in front of the room for convenient access by the microphone attendants during the Q&A.
- Please mute all cell phones and other portable devices.
- Photography and audio and video recording are not permitted.
Reviewer Reminders

• Deadline to submit your reviews is Friday, **May 24**th at 5:00 pm EDT.

• ORISE personnel are available on-site for assistance.
 • **Reviewer Lab Hours:**
 • Monday, 5:00 pm – 8:00 pm (Gateway ONLY)
 • Tuesday – Wednesday, 7:00 am – 8:00 pm (Gateway)
 • Thursday, 7:00 am – 6:00 pm (Gateway)
 • Tuesday – Thursday, 7:00 am – 6:00 pm (City)
 • **Reviewer Lab Locations:**
 • Crystal Gateway Hotel—*Rosslyn Room* (downstairs, on Lobby level)
 • Crystal City Hotel—*Roosevelt Boardroom* (next to Salon A)