

Life-Cycle Analysis of Hydrogen On-Board Storage Options

Amgad Elgowainy, Krishna Reddi, Michael Wang Argonne National Laboratory

The 2013 DOE Fuel Cell Technologies Program Annual Merit Review and Peer Evaluation Meeting

Arlington, VA May 14, 2012

Project ID: an034

Project Overview

Timeline

- Start: Oct. 2012
- End: Oct. 2013
- % complete: 70%

Budget

- Funding received in FY12: \$0K
- Funding for FY13: \$100K

Barriers to Address

- Evaluate impact of H₂ storage technologies on energy and emissions
- Overcome inconsistent data, assumptions, and guidelines
- Develop models and tools
- Conduct unplanned studies and analyses

Partners/Collaborators

- SNL and Univ. of Michigan (HSECoE partners)
- Industry stakeholders

LCA of Energy and Emission Effects of H2 Fuel Cell Electric Vehicles with GREET:

Outputs & Deliverables

Technologies (FCT)Program, Program Plan and Multi-Year RD&D Plan

FCEVs GHG emission assessment, including various onboard storage options

System Boundary:

- Vehicle Cycle: raw material to vehicle recycling ٠

*http://www.adoptech.com/pressure-vessels/main.htm

Approach and Data Sources

- Approach: build LCA modeling capacity with the GREET model
 - Continue to expand and update GREET to serve the LCA community
 - Address emerging LCA issues related to H₂ and FC systems
 - Maintain openness and transparency of LCAs
- Data Sources
 - Data for FCEVs onboard storage systems
 - Open literature
 - Simulation results from other researchers
 - HSTT
 - Data for FCEV manufacturing and operation
 - Open literature
 - Simulation results with models such as Autonomie
 - Auto makers and FC system producers
 - Data for H₂ production and delivery pathways
 - Open literature
 - Simulation results with models such as H2A
 - H₂ producers and technology developers

Key Milestones

- Evaluate LCA of FCEV onboard storage options
 - 350 bar compressed gas
 - 700 bar compressed gas
 - Cryo-compressed (CcH2)
 - MOF-5 sorption

Evaluate FCEV manufacturing cycle

- Components (powertrain, transmission, chassis, traction motor, generator, electronic controller, fuel cell auxiliaries, <u>storage</u> and body)
- Batteries (startup/accessories, motive)
- Fluids (engine oil, power steering fluid, brake fluid, transmission fluid, powertrain coolant, windshield fluid, adhesives)
- Vehicle assembly, disposal, and recycling
- Evaluate FCEV fuel cycle (Well-To-Wheels)
 - Hydrogen production
 - Hydrogen compression/cooling/liquefaction
 - Hydrogen delivery
 - Hydrogen consumption by FCEV

Onboard Storage and Vehicle Manufacturing Cycle

On-Board physical storage material composition*

	350 bar (258 L, 6 kg _{H2})		700bar (149 L, 5.8 kg _{H2})		CcH ₂ (81 L, 5.7 kg _{H2})	
Component	Type IV Tank			LLNL Gen3, 4000 psi Tank (scaled to 5.7 kg _{H2})		
	Weight (kg)	Material	Weight (kg)	Material	Weight (kg)	Material
Liner	11.4	HDPE	8.0	HDPE	25.7	Al
Carbon Fiber	53.0	CF/Epoxy	67.4	CF/Epoxy	12.4	CF/Epoxy
Glass Fiber	6.1	GF/Epoxy	4.6	GF/Epoxy		
Boss	0.4	SS	0.9	SS	0.4	SS
Plug	0.2	SS	0.1	SS	0.3	SS
Insulation	5.2	Foam	4.0	Foam	1.2	PET
Vacuum Shell					32.9	SS
Supporting brackets	5.2	carbon steel	4.0	carbon steel	6.5	carbon steel
Balance Of Plant						
Electronics and Controls	1.0	Si	1.0	Si	2.4	Si
Valves	3.4	carbon steel	3.4	carbon steel	6.9	carbon steel
Instruments	3.3	SS	3.3	SS	1.1	SS
Heat Exchanger					1.8	AI
Piping/fittings	4.0	SS	4.0	SS	4.0	SS
Miscellaneous	2.0	carbon steel	2.0	carbon steel		
Total	95.2	kg	102.7	kg	95.6	kg

*Argonne assessment of H2 storage tank systems by Ahluwalia et al. (2010) and Hua et al. (2011)

Calculation of carbon fiber energy and emissions intensity*

*By Michael C. Johnson and John Sullivan, ANL

Component

units

Ammonia Propylene

Acrylonitrile MMA

Acrylic fiber

Carbon fiber

Total

Total in Btus

On-Board MOF-5 storage material composition*

- > 200 L, Type I tank
- > 5.6 kg_{H2} useable (6.2 kg_{H2} total) @ 100 bar, 80K

		MOF-5	
Component		Weight	
Component		(кд)	Material
Pressure Vessel		62.2	Al
Vacuum Shell		14.8	Al
Heat Exchanger		4.3	Al
Insulation		7.7	PET
Adsorbent		24.4	MOF-5
Balance Of Plant		17.4	SS
Tot	tal	130.8	kg

MOF-5 synthesis carbon intensity

On-Board MOF-5 storage adsorption/desorption energy

- Cooling to remove adsorption energy
 - ✓ 4 kJ/mol (2.2-7.4 kJ/mol reported)
 - ✓ 56 kg liquid N2 is required
- Cooling of tank from 180 K to 80 K
 - ✓ 25 kg liquid N2 is required
- Heat of desorption
 - ✓ 1.546 kW for 5600 seconds to desorb 5.6 kg_{H2}
 - ✓ 4.8 kWh_{H2} assuming 50% efficiency for H2→electricity
- Compressor recirculation energy
 - ✓ 940 kJ/kg_{H2}, 4.5 kg_{H2} recirculated
 - ✓ 1.8 kWhe for recirculation

Summary of materials' life-cycle GHG emissions intensity

Material	Carbon Intensity (kg _{CO2e} /kg _{material})
Carbon Fiber Resin	34
MOF-5	64
Aluminum	10
HDPE	3.5
Stamped Steel Parts	4.2
Stainless Steel Parts	2.5
Glass Fiber	5.9
Foam	3.4

> 350 bar storage → 2210 kg_{CO2e}
> 700 bar storage → 2670 kg_{CO2e}
> CcH2 storage → 1490 kg_{CO2e}
> MOF-5 storage → 2440 kg_{CO2e}

Onboard H2 storage contributes 15-23% to the vehicle manufacturing cycle

Fuel Cycle (WTW)

Fuel production and delivery pathways for compressed gaseous hydrogen

Fuel production and delivery pathways for cryocompressed hydrogen

Hydrogen production today is mainly from SMR, but other low-carbon pathways exist today

At 72% NG to H2 energy efficiency

→ 12 kg_{CO2e}/kg_{H2}

Actual North America liquefaction plants GHG emissions are different from US average mix

Liquefaction GHG emissions today may be much less (~40% less) than based on US average mix

Region	GHG Emissions (g _{co2e} /kWhe)	GHG Emissions (kg _{co2e} /kg _{H2})*	Liquefaction Capacity (ton/day)	
California	380	4.5	30	
Louisiana	610	7.4	70	
Indiana	1070	12.8	30	
New York	330	4.0 or 0**	40	
Alabama	580	7.0	30	
Ontario	130	1.6	30	
Quebec	20	0.20	27	
Total			257	
Weighted average		5.7 or 5.0**		
If US mix	670	8.0		

*Assuming liquefaction energy of 12 kWhe/kg_H2

** Plant in NY uses hydro power

MOF adsorption/desorption GHG emissions

Material	Carbon Intensity (kg _{cO2e} /kg _{H2})
Adsorption cooling*	3.4
Tank cooling*	1.5
Desorption heat	0.3
Recirculation	0.2
Total	5.4

*0.5 kWhe/kg_LN2

GHG emissions of H2 compression are based on US average mix

Compression process	Pressure lift (bar)	Compression Energy (kWhe/kg _{H2})	GHG Emissions (kg _{co2e} /kg _{H2})*
Pipeline compression	20 → 70	0.6	0.40
350 bar dispensing	20 → 440	3	2.0
700 bar dispensing	20 → 900	4	2.7
-40°C pre-cooling		0.25	0.17
CcH2 station	2 → 350	0.3	0.20

*Assuming US average generation mix

GHG emissions of LH2 truck delivery is smaller than tube-trailer delivery due to higher payload

Fuel cycle GHG emissions of MOF-5, LH2 and compressed GH2 pathways

kg_{CO2e}/kg_{H2}

Pathway	Production	Transport	Compression/ liquefaction	Total
GH2 Pathway (350 bar)	12	0.7	2.0	14.7
GH2 Pathway (700 bar)	12	0.7	2.9	15.6
LH2 Pathway (CcH2)	12	0.1	5.2	17.3 or 20.3‡
MOF-5 Pathway	12	0.7	5.4	18.1

‡ Assuming US mix for H2 liquefaction

Onboard storage represents 3-5% of total LCA GHG emissions of compressed GH2, LH2 and MOF-5 pathways

g_{CO2e}/mi*

Pathway	Onboard Storage	Balance of Vehicle Cycle	Fuel Cycle	Total
GH2 Pathway (350 bar)	14	56	245	315
GH2 Pathway (700 bar)	17	56	257	330
LH2 Pathway (CcH2)	9	56	288	350 or 400‡
MOF-5 pathway	15	56	302	373

*Assuming 60 mi/kg_{H2} fuel economy for FCEVs, and 160,000 lifetime VMT
‡ Assuming US mix for H2 liquefaction

Summary of Preliminary LCA Results

- Onboard H2 storage contributes 15-23% to the <u>vehicle</u> <u>manufacturing cycle</u>
 - Largest contribution from 700 bar and MOF-5 storage systems
- Onboard storage systems contribute 3-5% of the <u>total LCA GHG</u> emissions of compressed GH2, LH2 and MOF-5 pathways
- GHG emissions of H2 liquefaction overshadow the low GHG emissions of the CcH2 storage system

Future Work

- Address outstanding issues related to CcH2 and sorption storage systems
- Update GREET model with new data and analysis
- Evaluate emerging hydrogen production, delivery and FCEV technologies
- Continue to provide LCA technical support to DOE FCT program and industry stakeholders

Acronyms

- Al: Aluminum
- ANL: Argonne National Laboratory
- CcH2: Cryo-compressed Hydrogen
- CF: Carbon Fiber
- CO2: Carbon Dioxide
- DOE: Department of Energy
- FC: Fuel Cell
- FCT: Fuel Cell Technologies
- FCEV: Fuel Cell Electric Vehicle
- GH2: Gaseous Hydrogen
- GHG: Greenhouse Gases
- GREET: Greenhouse gases, Emissions, and Energy use in Transportation
- H2: Hydrogen
- HDPE: High Density Polyethylene
- HSECoE: Hydrogen Storage Engineering Center of Excellence

- HSTT: Hydrogen Storage Tech Team
- LCA: Life Cycle Analysis
- LH2: Liquid Hydrogen
- LN2: Liquid Nitrogen
- mi: mile
- MOF: Metal Organic Framework
- MOF-5: Zn₄O(BDC)₃
- MMA: Methyl Methacrylate
- N2: Nitrogen
- NG: Natural Gas
- PET: Polyethylene Terephthalate
- RD&D: Research, Development, and Demonstration
- SMR: Steam Methane Reforming
- SNL: Sandia National Laboratory
- SS: Stainless Steel
- □ VMT: Vehicle Miles Traveled
- WTW: Well-To-Wheels

28

Backup Slides

Steel parts energy and emissions intensity

Δ

Aluminum parts energy and emissions intensity

