POWER GENERATION FROM AN INTEGRATED BIOMASS REFORMER AND SOLID OXIDE FUEL CELL

SBIR Phase III Xlerator Program

Quentin Ming, Principal Investigator
Patricia Irving, Program Manager, Presenter

INNOVATEK

May 14, 2013

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
Overview

Timeline
Start: 10-01-2010
Finish: 03-31-2014
66% Complete

DOE Barriers: Cost, Durability & Performance

DOE Targets: H2 production from diverse domestic sources; distributed power demo 2Q 2018

<table>
<thead>
<tr>
<th>Year</th>
<th>Cost/kW</th>
<th>Efficiency</th>
<th>Lifetime</th>
<th>Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>$1700</td>
<td>42.5%</td>
<td>40,000h</td>
<td>5 kW Dist Gen Sys</td>
</tr>
<tr>
<td>2020</td>
<td>$1500</td>
<td>>45%</td>
<td>60,000h</td>
<td>5 kW Dist Gen Sys</td>
</tr>
</tbody>
</table>

Budget
Total: $2.3M
Received FY12: $650K
Expected FY 13: $748K

Partners
Topsoe Fuel Cell
Fuel Cell Energy/Versa Power
Impact Washington
Relevance: Public Benefits; H₂ from Diverse Sources

Addressing DOE Barriers and Targets: Environmental Quality & Energy Security

The full benefits from fuel cells are possible only if the feedstock for hydrogen production is a renewable, domestically produced commodity that does not compete in the food chain, and does not increase the price of energy.

Our technology will address these issues by:

- Helping shift the primary energy source for H₂ from fossil fuels to renewable non-food biomass, using natural gas as the bridge.
- Using less fuel through high system efficiency by effective thermal integration and off-gas recycling.
- Providing an alternative method for distributed power generation near the source of the feedstock, enhancing grid stability at competitive cost.
Relevance: Project Objectives

<table>
<thead>
<tr>
<th>Year</th>
<th>Objective</th>
<th>DOE Barriers Addressed</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>Establish design to meet technical and operational needs for distributed energy production from renewable fuels</td>
<td>SOFC power using renewable non-food biomass fuel; codes & standards</td>
</tr>
<tr>
<td>Complete</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011/2012</td>
<td>Design, optimize, and integrate proprietary system components and balance-of-plant in a highly efficient design.</td>
<td>Demonstration; system efficiency; design for low cost manufacturing</td>
</tr>
<tr>
<td>Complete</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 2013/2014 | Demonstrate the technical and commercial potential of the technology for energy production, emissions reduction, and process economics | • 40,000 h lifetime
• 99% availability
• >40% efficiency
• $1700/kW equipment cost |
Approach: Project Goal

Develop and demonstrate a fuel cell distributed energy system that operates with 2nd generation biofuel.

- System based on InnovaTek’s steam reforming process and SOFC
- Non-food biofuels include pyrolysis oil and bio-kerosene processed locally
- System to be demonstrated in Richland’s renewable energy park and tied to grid

Mid-Columbia Energy Initiative:
Meets 2020 electrical load growth needs with renewables.
Approach: Milestones & Go/No Go

<table>
<thead>
<tr>
<th>Date</th>
<th>Milestone or Go/No Go</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan 2013</td>
<td>M4: Achieve 40% system operating efficiency with revised/optimized system design</td>
<td>41%</td>
</tr>
<tr>
<td>Feb 2013</td>
<td>M5: System performance proves superior energy efficiency & emissions reductions compared to conventional technology</td>
<td>Complete</td>
</tr>
<tr>
<td>March 2013</td>
<td>Go/No Go: Analysis of process economics supports commercial feasibility (Cost of power is competitive)</td>
<td>Complete</td>
</tr>
<tr>
<td>Oct 2013</td>
<td>Complete fabrication of Gen3 prototype for field demonstration</td>
<td>Not started</td>
</tr>
<tr>
<td>March 2014</td>
<td>Complete 6 months of field demonstration</td>
<td>Not started</td>
</tr>
</tbody>
</table>
Approach: Optimization & Economic Analysis

1. Use simulation and modeling studies to optimize system design for performance and cost reduction.
 - Optimize process configuration using MathCAD and FEMLAB
 - Conduct FMEA to assess necessary redesign, determine maintenance requirements and costs, lifetime
 - Conduct DFMA analyses to identify design changes to improve manufacturability and reduce production & operation costs
 - Use HOMER model to assess cost of power

2. Translate dimensions, geometries, and flow patterns defined from optimization modeling to 3-D CAD images

3. Complete Bill of Materials & SolidWorks drawing libraries for all original hardware designs and BOP
 - Use this information to model capital equipment costs and parasitic power requirements
Approach: Scale-up & Optimize Core Technology

InnovaGen® Fuel Processor for 4 kW power

- Creates hydrogen from a range of liquid and gaseous fuels with high energy density
- Proprietary catalyst & hardware
- Water neutral steam reformer
- Compact and efficient

Solid Oxide Fuel Cell

2012 2013
Size reduced, output increased

Transitioning to scaled-up SOFC
Approach: Economic Analysis Models

Techno-Economics Model
- Design and Costs
- SolidWorks® CAD Software
- Bill of Materials
- DFMA® Software
- System operation (efficiency, life, load); Fuel data & cost

Financial Model (Excel)
- Personnel
- Operating Expenses
- Property and Equipment; Financing
- Cost of Revenues
- Market Data, by Niche
- Sales/Licensing Projection
- Contract R&D

HOMER Software
- Analyzes cost of power
- Financial: Determines business viability

Cost of Energy
- Breakdown of costs by type
- Sensitivity analysis

Balance Sheet

Income Statement

Cash Flows

Legend:
- Blue = Data Input
- Purple = Software/Calculations
- Green = Output
- Data flow
Accomplishments: Developed Highly Efficient Thermally Integrated System Design

Process Flow Diagram
- Subdivided into 21 process streams

Mass and Energy Balance
- Completed for each process stream
- Determines input, output, efficiency

Optimized Layout, Piping & Instrumentation

Solid Model of Integrated System

Component Design and Analysis
- Process simulations
- Design trade-off analyses

5kW fuel cell system that operates on liquid bio-fuel
Accomplishments: Solid Model 4 kW

Design includes complete Bill of Materials and P&ID
Part count reduced by ~74%
Cost reduced by ~40%

Hot Box Subassembly

Fully Integrated System
Accomplishments: 41% System Efficiency

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross DC Power, kW</td>
<td>4.2</td>
</tr>
<tr>
<td>Current density, mA/cm²</td>
<td>390</td>
</tr>
<tr>
<td>Cell active area, cm²</td>
<td>550</td>
</tr>
<tr>
<td>Stack current, A</td>
<td>214.5</td>
</tr>
<tr>
<td>Cell voltage, volt</td>
<td>0.82</td>
</tr>
<tr>
<td>Number of cells</td>
<td>24</td>
</tr>
<tr>
<td>gross DC power, watt</td>
<td>4221</td>
</tr>
<tr>
<td>stack electrical efficiency</td>
<td>65.60%</td>
</tr>
<tr>
<td>parasitic power, watts</td>
<td>300</td>
</tr>
<tr>
<td>Net AC electrical efficiency</td>
<td>40.8%</td>
</tr>
</tbody>
</table>

Improved from last year (37.5%) due to:
- Better stack efficiency
- Lower parasitic power due to lower stack pressure drop
- Less waste heat loss through improved thermal integration and heat transfer
- Higher methane content in reformate
Accomplishments: Catalyst Durability

100% conversion of bio-kerosene for >900 hrs
Accomplishments: Analysis of Energy Cost

Adapted EERE’s HOMER Model for fuel cell system

- Examined several scenarios for delivering 5 kW electrical AC power for 10 years using InnovaGen FC power unit
- Compared bio-kerosene & natural gas
- Capitol and operating costs based on Bill of Materials and Testing
- Used projected production and fuel pricing data from DOE sources

Significant Findings:

1. Our fuel cell generator operating on natural gas could produce electricity at prices at or below current grid prices (<$0.09/kWh) when volume production brings capital costs down.

2. The price for liquid bio-fuel, estimated at $3.50 per gallon, is the dominant factor affecting cost of electricity when operating on bio-fuel.
Progress: Economic Analysis for 5 kW FC

Cost of energy using InnovaTek’s 5 kW fuel cell system with n.gas at current & forecasted spot price

- **Natural Gas 2013**: $0.147/m³
- **Natural Gas 2040**: $0.277/m³

<table>
<thead>
<tr>
<th></th>
<th>Natural Gas 2013</th>
<th>Natural Gas 2040</th>
<th>Bio-fuel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total net present cost</td>
<td>$37,938</td>
<td>$48,329</td>
<td>$104,959</td>
</tr>
<tr>
<td>Levelized cost of energy</td>
<td>$0.107/kWh</td>
<td>$0.136/kWh</td>
<td>$0.295/kWh</td>
</tr>
<tr>
<td>Operating cost</td>
<td>$3,222/yr</td>
<td>$4,503/yr</td>
<td>$11,485/yr</td>
</tr>
</tbody>
</table>

Cost of energy using InnovaTek’s 5 kW fuel cell system using bio-kerosene with Honeywell’s projected price

- **Bio-kerosene**: $3.50/gal
Progress: 32% Cost Reduction Fuel Processor

<table>
<thead>
<tr>
<th>Reformer System</th>
<th>Labor Cost</th>
<th>Material Cost</th>
<th>Total Cost</th>
<th>Parts</th>
<th>Approx Volume (L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Design</td>
<td>$10,201</td>
<td>$4951</td>
<td>$15,152</td>
<td>159</td>
<td>13.87</td>
</tr>
<tr>
<td>Revised Design</td>
<td>$6,374</td>
<td>$3997</td>
<td>$10,371</td>
<td>66</td>
<td>6.88</td>
</tr>
</tbody>
</table>

Reformer Design Comparison

Old Design
- Material Cost
- Labor Cost

New Design
- Material Cost
- Labor Cost
Progress: 79% Cost Reduction Fluid Handling

<table>
<thead>
<tr>
<th>Subassembly</th>
<th>Design</th>
<th>Labor Cost</th>
<th>Material Cost</th>
<th>Total Cost</th>
<th>Parts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Delivery</td>
<td>Original</td>
<td>$210</td>
<td>$2,630</td>
<td>$2,840</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>Revised</td>
<td>$22.50</td>
<td>$762</td>
<td>$785</td>
<td>16</td>
</tr>
<tr>
<td>Fuel & Fuel Delivery</td>
<td>Original</td>
<td>$390</td>
<td>$11,573</td>
<td>$11,963</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td>Revised</td>
<td>$60</td>
<td>$2,230</td>
<td>$2,290</td>
<td>25</td>
</tr>
</tbody>
</table>
Collaborations

Subcontractors
- Fuel Cell Energy – Versa Power SOFC (within DOE H₂ Program)
- Boothroyd Dewhurst – Design for Manufacturing & Assembly training
- Manufacturing partners – shift from welding to brazing

Strategic Partners
- Impact Washington – manufacturing design support
- PNNL – provided upgraded bio-oil made from non-food biomass (within DOE H₂ Program)
- Honeywell UOP – provides bio-kerosene
- City of Richland Electric Utility – providing site for field demo
- Mid-Columbia Energy Initiative

Education
- Supported 3 student interns from WSU, U of WA, Delta HS in mechanical engineering and chemistry
Proposed Future Work

Objective 3. Prove the technical and commercial potential of the technology

FY13
- Optimize performance by testing & adjusting operating parameters
- Further improve system efficiency & durability; reduce cost
 - Enhance FC-FP integration; evaluate BOP alternatives

FY14
- Fabricate and assemble fully integrated grid-ready 5 kW system
- Verify performance and durability with 6 month field demo at City Utility
- Analyze process economics
Summary

Relevance: Shift primary energy from fossil to renewable fuels
• Address codes & standards for fuel cells
• Increase system efficiency, lifetime and durability; decrease cost
• Distributed power production near source of feedstock to enhance grid stability

Approach: Develop reformer that generates hydrogen from non-food biofuels
• Develop highly efficient processing design of integrated SOFC and fuel processor
• Prove technology in long-term field demonstration with utility partner

Accomplishments: Achieved 41% system efficiency
• Used simulation and modeling to optimize component & system designs
• Prepared solid model of system & complete Bill of Materials with P&ID
• Developed optimized catalyst for biofuel reforming; demonstrated >900hrs durability
• Determined capital and operating expenses; modeled process economics

Collaborations: Supported 3 students; Subcontractors for fuel cell & manufacturers;
• Partnerships with PNNL, WSU, Boeing, City of Richland, Regional Energy Initiative

Future: Complete laboratory tests with 4 kW prototype
• Fabricate prototypes for grid interconnect
• Conduct field demonstration and long term operation
• Complete further analysis of process economics
Technical Back-up
Technical: System Efficiency Algorithms

system efficiency (electrical efficiency)

\[P_{\text{parasitic}} := 300 \text{W} \]

regulated DC power

\[DC_{\text{reg}}(I_d) := DC_{\text{gross}}(I_d) \cdot \eta_{\text{dc_dc}} \]

net DC power

\[DC_{\text{net}}(I_d) := DC_{\text{reg}}(I_d) - P_{\text{parasitic}} \]

net AC power

\[AC_{\text{net}}(I_d) := DC_{\text{net}}(I_d) \cdot \eta_{\text{dc_ac}} \]

\[\eta_{\text{ele}} := \frac{AC_{\text{net}}(I_d)}{LHV_{\text{spk}} \cdot (n_{\text{feed}} + n_2) \cdot MW_{\text{spk}}} = 40.793\% \]

\[\eta_{\text{ele}} = 0.408 \]

\[\eta_{\text{fps}} := \frac{LHV_{\text{H}_2} \cdot N_{\text{anode_in}_3} + LHV_{\text{CH}_4} \cdot N_{\text{anode_in}_0} + LHV_{\text{CO}} \cdot N_{\text{anode_in}_1}}{LHV_{\text{spk}} \cdot (n_{\text{feed}} + n_2) \cdot MW_{\text{spk}}} = 112.977\% \]

\[DC_{\text{gross}}(I_d) = 4.221 \times 10^3 \text{ W} \]

\[\eta_{\text{dc_dc}} := 95\% \]

\[\eta_{\text{dc_ac}} := 92\% \]

\[OCV_{\text{H}_2} := 1.48 \text{volt} \]

\[OCV_{\text{L}_2} := 1.25 \text{volt} \]

\[\eta_{\text{volt}} := \frac{\text{Vol}t800_{\text{cell}}}{OCV_{\text{L}_2}} = 0.656 \]