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Overview

Timeline Barriers
o Start: Sept 17, 2012 Overcome Chemical Degradation
 End: Sept 16, 2014 Mechanical Durability

« Phase Il Effort « Performance — stack water
« Cost
Budget Partners
« Total Phase Il project « General Motors (Automotive
funding Prototype Membrane
— DOE share: $999,815 Performance Testing)

Ballard (Non-automotive
Prototype Membrane
Performance Testing)

 Membrane Technology Research
(Module Prototype Production)

IV T Dana Corporation (New Partne;)
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— Contractor share: $325,000



Relevance to DOE

Design and develop high performance, low cost

water vapor membranes for cathode humidification

« Maximum Operating Consistently Consistently
Temperature >95 °C  produce 18,000 produce 30,000
» Pressure differential GPU at 85 C with GPU at 90 C max.

FHECIEIE: <75 kPa no chemical with no chemical

» Water transfer flux degradation over degradation over

=0.025 g min-" cm2 2000 hours 5000 hours
: 2000 hours with 5000 hours with
o)

Durability 5000.hours Wity S U0z < 20% drop in <10% drop in

drop in performance

performance performance

Cost <$10/m? ~$20/m? ~ $10/m?
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Relevance and Background

PEMs in fuel cells are more
durable and perform more
efficiently at higher hydration
levels.
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More efficient, low-cost humidifiers that
recycle the water generated from cathode
effluent both increase performance and
lower balance of plant costs.

Size of fuel cell stack can be decreased
by running under wetter conditions. 4




Relevance-HVAC Energy Savings

Conventional

Energy

Hot, wet recovery device  Cooler, drier HVAC
make-up air ] pretreated air
Outside heat we:ater
Air - ! Building
Exhaust to Cool, dry building
atmosphere exhaust air

697-3d

 On a summer day in the South Carolina midlands and coastal
plains, two thirds of the total energy costs for air conditioning are
attributable to moisture removal.

A membrane dehumidifier decreases the compressor load on a
conventional air conditioning system, resulting in energy savings of
up to 40%.

« Large, shorter term accessible market will increase volume and
lower the cost of the membrane for fuel cell applications.
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Tetramer Approach: Current State of the Art

« Perma Pure™ units containing Nafion® have not yet met the
desired size, weight and pressure drop requirements.

dPoint / WL Gore Module

Perma Pure™ Unit

 W.L. Gore reported at the 2012 AMR on both new PFSA and
hydrocarbon membranes in flat plate configuration. However
severe chemical degradation was detrimental to permeation

performance with a loss in permeance of up to 60% within
500 hours.
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Approach Strategies

Current WVT Show Stoppers: Anhydride and Salt Formation

* In 2009, Collette et al. concluded that upoh heating samples
of PFSA at 80 °C at both 0 % and 80% RH, the formation of

TN
* F2C7_ Fc 7,

sulfonic anhydrides were seen.

» This reduction in accessible sulfonic acid groups is
detrimental to performance parameters used in fuel cells.

Reduction in water uptake > 50%, Langmuir volume > 80 %

and ionic conductivity of > 80 % within 200 days at 80 °C.
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TETRAMER Ref: Collette, R. M. et al., “Hygrothermal
TECHNOLOGIES Aging of NAFION®”, J. Memb. Sci. 330
(2009) 21-29.
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Approach Strategies
WVT Show Stopper: Contamination via Salt Formation

e During the 2012 annual merit review, W.L. Gore (FC
067) demonstrated that salt contamination can
contribute to water permeance reduction where >70 %
reduction in permeance was observed for an ionomer
that was fully converted to its salt form.

* They also mentioned that customers had observed this

contamination issue during testing.
R R

O S O lonic Contaminant __ O S O

OH O Na*
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Tetramer Approach: Phase | Positive Permeation
Results of Different Molecular Architectures
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Phase | Tetramer Membrane Development

Over 150% improvement (left figure) of water vapor permeation
achieved through Tetramer’s proprietary membranes.

However, degradation rate of 11% decline over 500

hours (right

figure) was unacceptable. Some anhydride formation was

TECHNOLOGIES

Bringing Creativity to Light

TETRAMEI% possible.

9



Tetramer Approach for Phase ||

Proprietary polymer architectures which provide
multiple water transport paths while mitigating or
eliminating anhydride formation and salt blocking
structures were proposed and accepted by DOE for
Phase |l.

Polymer Design Elements

s
BLOCK A N ( BLOCK B N ( BLOCK C N ( BLOCK D
Water Permeability Mechanical Strength Processability Stability
Hydrophilic groups, lonic or Rigid structures Stereoisomeric structures, Chemical resistance,
\Intermolecular attractions Hydrophobic linkages Solubilizing groups Crosslinking
TETRAMER 10
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Phase Il Approach
2 Year Technical DOE Targets

Sept. 2014 Objectives

(1) Demonstrate a water vapor transport membrane with >30,000
gas permeation units at 90°C max with little chemical
degradation over 5000 hours

(2) Develop a water vapor membrane with durability of less than
10% projected loss water permeation over 5000 hours

(3) Limit the crossover leak rate to less than 150 GPU

(4) Design temperature durability of 90°C with excursions to
100°C

(5) Limit the cost to less than $10/m? at medium volumes.
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Approach/ Accomplishments: 2 Year Task
6 month progess

Schedule Overview and

D Task Name GHDljul-j; MJ SGHDIH:J;HHJJ 5
1 |Task 1: Performance Optimization for WVT Application
2 Task 1.1: Synthesis of New Monomers Resistant to Chemical Degradation T — |
BEE Synthesis of Stable Monomer & 11114
4 Task 1.2 Synthesis of New Polymers Resistant to Chemical Degradation 0%
L Synthesis of Homopaolymers & 116
6 Synthesis of Copolymers 4 314
T Task 1.3 Evaluation of Chemical, Mechanical and Water Transport Stability 0% | —
"8 |Task 2: Performance and Durability Optimization of New Polymers from Task 1 '4
9 Task 2.1 Purification of Monomers and Polymers 0% WL |
10 Task 2.2 Stabilitization of Degradation Mechanisms Route 1 0% m |
11 Task 2.3 Stabilization of Degradation Mechanisms Route 2 L
12 Task 2.4 Stabilization of Degradation Mechanisms Route 3 L
13 |Task 3 Down Selected Prototype Preparation and Testing P
14 Task 3.1 Automotive Testing e | |
15 Task 3.2 Non-Automotive Testing 0% ]
16 Task 3.3 HVAC Testing 0% ]
17 |Task 4 Scale-up of Down Selected Polymers and Cost Confirmation Estimates P
18 Task 4.1 Scaleup 0% ]
719 | Scaleup of First Batch ’l'"??
20 Scaleup of Second Batch 3HT
21 Scaleup of Third Batch 4r2g
22 Task 4.2 Technology Tranfer Package Preparation 0% [ |
23 Task 4.3 Cost Analysis M [ ]
TET:. ER
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30,000 GPU
Achieved
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Six Month Accomplishments:
Task 1: Polymer Molecular Architecture Design

-
BLOCK A Y ( BLOCK B N ( BLOCK C N ( BLOCK D
Water Permeability Mechanical Strength Processability Stability
Hydrophilic groups, lonic or Rigid structures Stereoisomeric structures, Chemical resistance,
\Intermolecular attractions L Hydrophobic linkages Solubilizing groups Crosslinking

» Synthesis of 6 new monomer and 12 new film forming
polymer structures with these architectures has been
achieved in the past 6 months

« Extensive reaction condition optimization has been
necessary to get purity and film forming polymers

» Purification and characterization (NMR, MS, EA, FTIR
and GPC) of these materials has been defined

* Yield and better processing conditions identified for Task
2

TETRAMER 13
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Six Month Accomplishments:

Task 1: Polymer Molecular Architecture Design

4 )
BLOCK A

Water Permeability

Hydrophilic groups, lonic or
Intermolecular attractions

\. /

Moist Air Inlet
T. 80 °C
P: 160 kPa abs
80% RH

Dry gas flow rate: x

Dry Air Outlet

(Humidified)

N\ [/ ) )
BLOCK B BLOCK C BLOCK D
Mechanical Strength Processability Stability
Rigid structures Stereoisomeric structures, Chemical resistance,
Hydrophobic linkages ) Solubilizing groups Crosslinking

GM Testing Conditions
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Moist Air Outlet

Dry Air Inlet
T: 80°C
P: 183 kPa abs
0% RH
Dry gas flow rate: 1.2 x

Membanes are cast on an Erichsen
casting table in a class 1000 clean room
then 50 cm? square stamps tested

14



4 N
BLOCK A

Water Permeability

Six Month Accomplishments:
Task 1: Polymer Molecular Architecture Design

Hydrophilic groups, lonic or
Intermolecular attractions

\. /

N\ [ ) N
BLOCK B BLOCK C BLOCK D
Mechanical Strength Processability Stability
Rigid structures Stereoisomeric structures, Chemical resistance,
Hydrophobic linkages ) Solubilizing groups Crosslinking y

Results: Testing by GM under
conditions has indicated that we
have achieved between 17,000 and

20,000 GPU for 5 of the new

polymer structures!
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Six Month Accomplishments:
Task 1: Polymer Molecular Architecture Design

» FTIR analysis shows evidence of anhydride formation in NAFION®
after heating at 80 °C, 80% RH
(FEM. Collette et al., Journal of Membrane Science 330 (2009) 21-29)

D day 20 days 35 days

60 days B3 day 110 days
140 days — 180 days — 200 days — 256 days 319 cays 2935 days

liﬁ Signal characteristic of
ﬂ anhydride formation in

| NAFION® (1440 cm-)

Absorbance

4000 AE00 3200 2800 2400
cm-1

2000 16C0 1200 aoo 400

« Evidence of significant anhydride formation in NAFION®
membranes was reported after within 20 days of heating at 80°C.
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Six Month Accomplishments:

Task 1: Polymer Molecular Architecture Design

s
BLOCK A ) (

Water Permeability
Hydrophilic groups, lonic or
Intermolecular attractions

\_

BLOCK B
Mechanical Strength
Rigid structures
Hydrophobic linkages

N\
BLOCK C

Processability

Solubilizing groups

Stereoisomeric structures,

\
BLOCK D

Stability
Chemical resistance,
Crosslinking

* Five new polymers were
tested under Collette, et al.
conditions for both 240 hours
at 80°C and 4 hours at 140 °C
and no indication of anhydride
formation at 1440 cmin
infrared was detected!!

 More time and higher
temperature (95 °C) testing is
underway
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Key Phase Il Accomplishments After 6 Months

Tasks Completion
Date
%Complete

Task 2: Improve water The new membranes are
transport to 30,000 GPU with  consistently achieving the initial
chemical stability as defined  ~18,000 GPU target for

In Task 1 durability testing.

Feb. 2014

25%

TETRAMER 18
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Collaborations

Partners

* General Motors (Industry) has been a strong partner for over 5
years and is very active in testing our materials under
automotive fuel cell conditions

- Ballard (Industry) has received samples and done some very
preliminary testing under non-automotive fuel cell conditions.
They will do Prototype Membrane Performance Testing in year 2

« Membrane Technology Research (Industry) has participated
In water vapor transport testing and will participate in module
prototype production in year 2

 New Collaborator- Dana Corporation (Industry) has
participated in water vapor testing and will contribute both
prototype testing and fuel cell system design

TETRAMER 9
TECHNOLOGIES
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Future Work for Phase |l

FY 2013

« Continue durability tests at higher temperatures (95 °C) and longer
times to assure chemical resistance. In parallel, continue synthesis
of new polymer architectures to increase water vapor transport from
20,000 GPU to 30,000 GPU

« Ultilize initial results to optimize membrane durability to less than 20
% loss in performance after 2000 hours.

« Use these new molecular architectures to increase temperature
durability from 80 °C to 90 °C with excursions of 100 °C

« Automotive prototype membrane performance testing

FY 2014

 Down selected membranes will be then tested for non-automotive
prototype membrane performance using module prototype
production

TETRAMER 20
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Phase Il Six Month Summary

Relevance — Develop improved low cost water vapor membranes to
cathode humidification modules for fuel cells and HVAC
applications

Approach — Synthesize new polymer molecular architectures which
avoid chemical degradation, increase water vapor transport,
mechanical durability at lower cost.

Technical Accomplishments — New monomers and polymers
successfully synthesized which have indicated chemical
resistance with acceptable water vapor transport.

Collaborations — Partners in place to build and evaluate prototype
modules with down selected materials.

Future Work — Continue chemical resistance tests to determine
longer term stability. In parallel, continue synthesis of higher
permeability polymer architectures. Down select best
candidates for scaleup and provide prototypes to collaborators.

TETRAMER 21
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Phase Il Six Month Summary
Overall:

Good Start
Slightly Ahead of Schedule
Still a Long Winding Road Ahead

TETRAMER 22
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Contact Information

Earl Wagener, CEO

earl.wagener@tetramertechologies.com
864.650.0430

Jeffrey DiMaio, Technology Manager

dimaio@tetramertechnologies.com
864.903.9009

Brad Morgan, Senior Research Scientist

brad.morgan@tetramertechnooiges.com
864.506.1263
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Technical Back-Up Slides
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revious Accomplishments -

Improved PEM Performance vs. Nafion® 1000
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 Membrane conductivity as a function of relative humidity (RH) for proprietary
Generation 1 TT PEM ionomer and Nafion® 1000.
* Fuel cell polarization curve at 150 % RH, for proprietary TT ionomer
membrane and Nafion® 1000.
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Improved Performance through
Microstructured Materials

——G2n 1 PFCE radom —=—HFR- Gan 1 PFCE randoem
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« 50 cm? single cell, serpentine flow field
« 80°C, 3/3 A/C stoich, 175kPa, 0.4/0.4 mgPt/cm?
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Table 3.4.9 Technical Targets: Cathode Humidification System for

80-kW, Transportation Fuel Cell Systems Operating on Direct Hydrogen

Characteristic Units 2017 Targets

Maximum operating temperature °C >95
Maximum pressure differential between wet and dry sides kPa 7a
Maximum pressure drop at full flow (each side) kPa 35
Water transfer at full flow® g 57! 5
Durability” h 5,000
Maximum air leakage at full flow % 05
Volume L 5
Weight kg 5
Cost® $ 100

Table 3.4.10 Technical Targets: Cathode Humidifier Membrane for

80-kW, Transportation Fuel Cell Systems Operating on Direct Hydrogen

Characteristic Units 2017 Targets
Maximum operating temperature °’c =05
Maximum pressure differential between wet and dry sides kPa 7a
Water transfer flux at full flow® a min”'cm™ 0.025
Durability” h 5,000
Cost® $/m’ 10

Dry air in: 0.23 SLPM/em? dry gas flow, 183 kPa (absolute), 80°C, 0% RH. Wet air in: 0.20 SLPM/em? dry gas
flow, 160 kPa (absolute), 830°C, 85% RH.

Based on U.S. DRIVE Fuel Cell Tech Team Cell Component Accelerated Stress Test and Polarization Curve
Protocols (http:/ /www.uscar.org/guest/view_team phprteams_id=17), <10% drop 1n water transfer at full flow.

Cost projected to high-volume production (500,000 systems per year).

27



Market Size for Fuel Cells
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Source: Tradition Equities and Innovative Research
and Products
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Fuel Cell R&D — Progress

U.5. DEPARTMENT OF

ENERGY

Energy Efficiency &
Renewable Energy

We’ve reduced the

projected high-volume cost

of fuel cells to $61/kW*

+ More than 35% reduction
in the last two years

+ More than 75% reduction
since 2002

- 2008 cost projection was
validated by independent
panel**

We’ve more than doubled
durability in the last few
years

* More than 7,300 hrs with
single cell, exceeding
5,000 hr target

*Based on projection to high-volume manufacturing
{500,000 units/year).

“*Panel found $60 — $80/%W 1o be a “valid estimare™:
hip:/hydrogendoedev.nrel.govi/peer reviews.himl
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Projected Transportation Fuel Cell System Cost
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