2013 Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting Arlington, Virginia – May 13-17, 2013

Non-Precious Metal Fuel Cell Cathodes: Catalyst Development and Electrode Structure Design

Piotr Zelenay

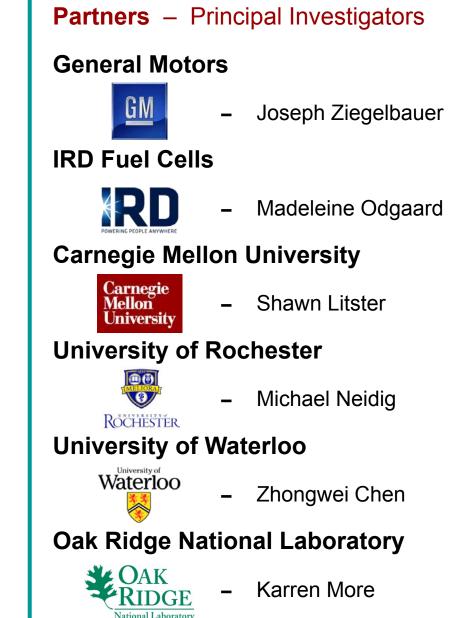
Los Alamos National Laboratory Los Alamos, New Mexico 87545

Project ID: FC107

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline


- Start date: April 1, 2013
- End date: Three-year duration
- **Completion:** 0% (new project)

Budget

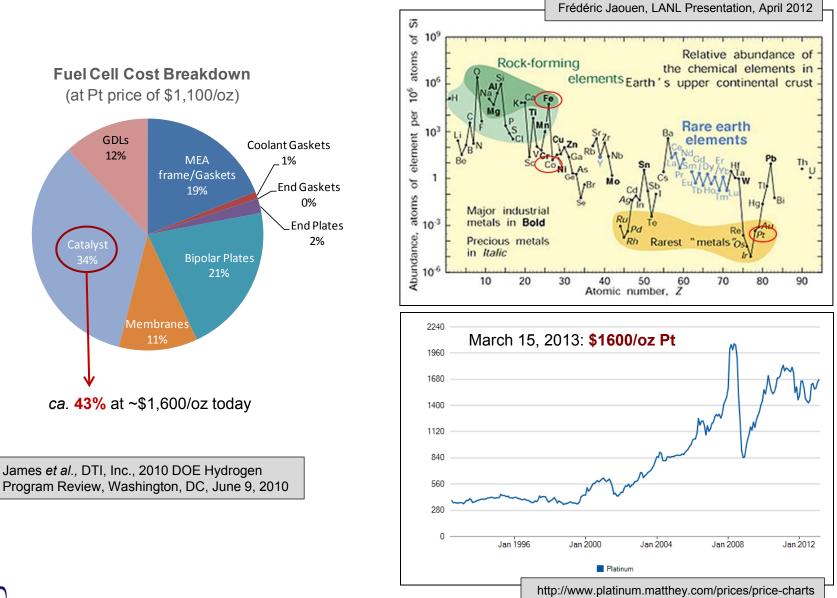
- Total funding estimate:
 - DOE share: 3,998 K
 - Contractor share: 1,008 K
- FY13 funding received: 155 K

Barriers

- A. Activity (catalyst; MEA)
- B. Durability (catalyst; MEA)
- C. Power density (MEA)

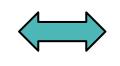
Objective

Advance non-PGM cathode technology through the development and implementation of novel materials and concepts for cathode catalysts and catalytic layers with (i) oxygen reduction reaction (ORR) activity viable for practical fuel cell systems; (ii) much improved durability; (iii) sufficient ionic/electronic conductivity within the catalyst layer; (iv) adequate oxygen mass transport; and (v) effective removal of the product water.


Table 3.4.13 Technical Targets: Electrocatalysts for Transportation Applications				
Characteristic	Unit	2011 Status	Targets	
			2017	2020
Non-Pt catalyst activity per volume of supported catalyst	A / cm ³ @ 800 mV _{IR-free}	60 (measured at 0.8 V) 165 (extrapolated from >0.85 V)	300	300

Technical Targets

- Volumetric catalyst activity in MEA at 0.80 V (*iR*-free), 80°C:
- Four-electron selectivity (RRDE):
- MEA maximum power density at 80°C:
- Performance loss at 0.80 A cm⁻² after 30,000 cycles in N₂:
- \geq 300 A cm⁻³ \geq 99% (H₂O₂ yield \leq 1%) \geq 1.0 W cm⁻² \leq 30 mV


Relevance: Motivation

ORR Catalyst Development

- Multiple nitrogen precursors and alternative supports (LANL)
- Non-pyrolyzed phthalocyaninederived catalysts (Waterloo)
- Nitrogen-doped carbon nanostructures (LANL, Waterloo)

Characterization & Active-Site Determination

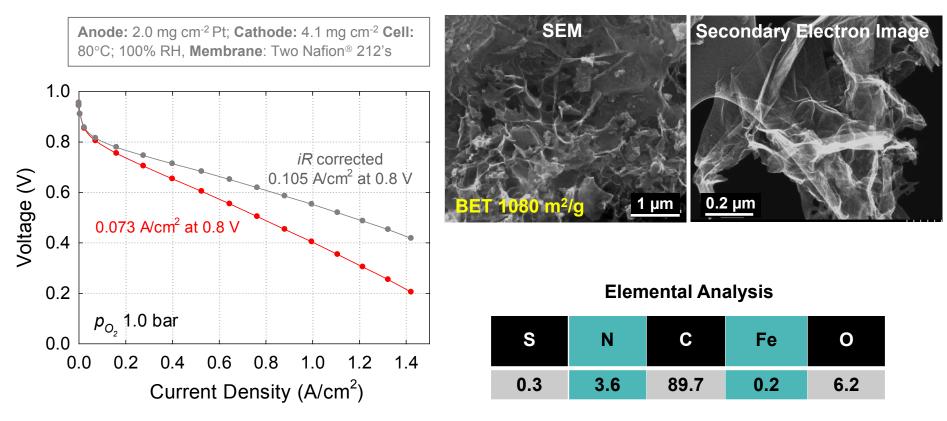
- Advanced catalyst characterization (LANL, Waterloo, GM, ORNL)
- Active-site determination using oxygen analogs as surface-specific probes (UR, LANL)

Electrode Design, Integration & Optimization

- GM model validation and parameter estimation using in-situ microstructured electrode scaffold measurements (GM, CMU)
- Microstructually-consistent models (ORNL, CMU)
- Electrode optimization (CMU, GM, LANL, Waterloo)

\checkmark

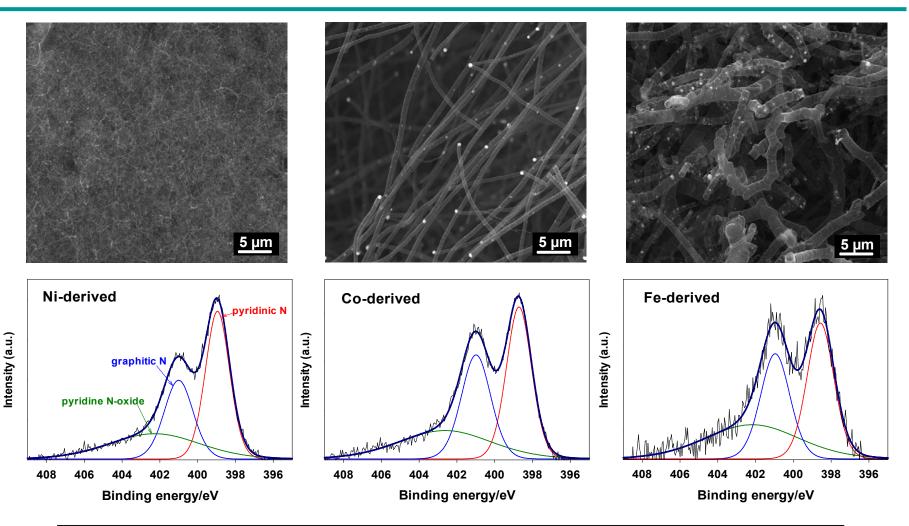
MEA Fabrication, Optimization & Scale-up; Deliverable


- MEA fabrication, optimization and scale-up (IRD, GM, LANL)
- Project deliverable: 50 cm² or larger MEAs (GM, IRD)

Date	Milestones	
September 2013	Project management: Execute all 5 subcontracts.	
March 2014	Electrode design: Image 3D structure of a state-of-the-art LANL electrode by Nano- XRT and compute effective transport properties.	
April 2014	Active site determination: Validate surface-probe approach for a non-PGM catalyst using at least two characterization techniques.	
May 2014	Heat-treated catalysts: Synthesize nanotube-based and graphene-based metal-free ORR catalysts; demonstrate $E_{\frac{1}{2}} \ge 0.60 \text{ V } vs. \text{ RHE}.$	
August 2014	Electrode design: Perform MES measurements of the electrolyte potential distribution in cathodes with two leading FY14 material sets and use data to evaluate predictive capabilities of existing GM and CMU models.	
September 2014	Heat-treated catalysts: Demonstrate $i_{0.8V} \ge 150 \text{ A cm}^{-3}$, $\eta > 95\%$, and 30,000-cycle performance loss of no more than 50 mV ($\Delta E_{\frac{1}{2}}$ and/or ΔV at 0.8 A cm ⁻²).	

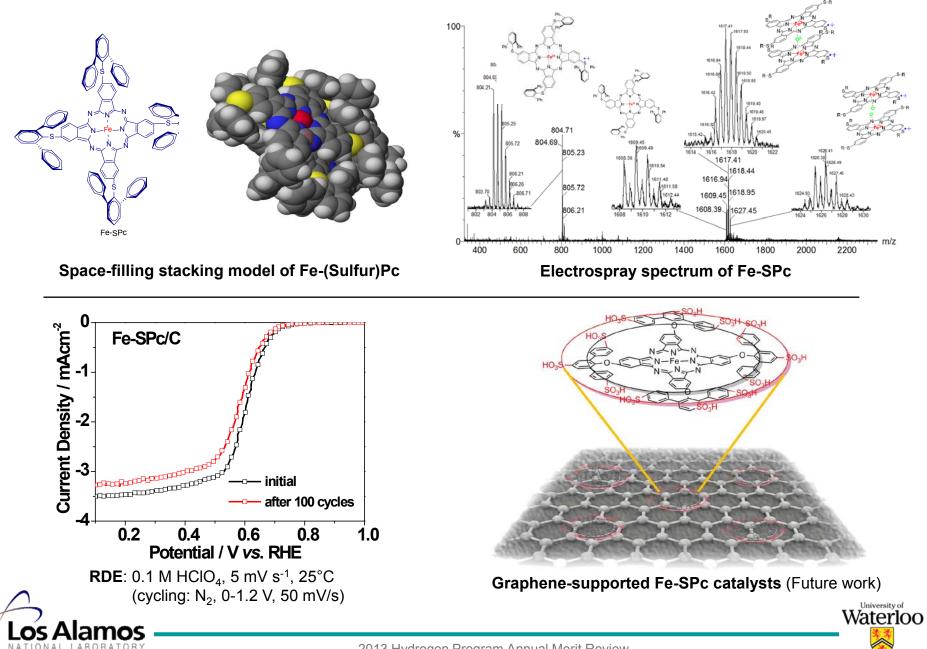
Note: This is a new project; information that follows

reflects state of the art and research to be performed

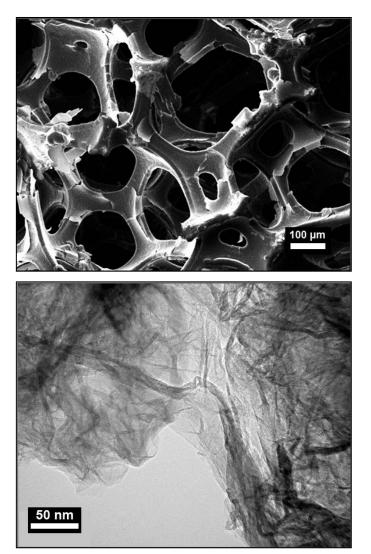


Morphology

- Polyaniline-derived catalyst yielding ORR current density close to 0.1 A/cm² at 0.8 V in fuel cell testing
- High-surface-area graphene-rich porous morphology likely acting as a host for active ORR sites



Catalyst Development: Nitrogen-Functionalized CNTs


- Carbon tubes synthesized in one step with high yield; no further purification needed
- Tube diameter and nitrogen functionalities depending on the transition metal used
- Various combinations of transition metal yielding CNTs with desired properties

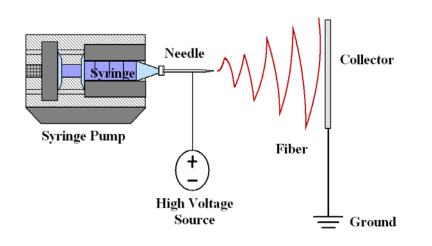
Catalyst Development: Non-Pyrolyzed Phthalocyanine-Derived ORR Catalysts

Catalyst Development: Graphene-Based Metal-Free 3D Structures

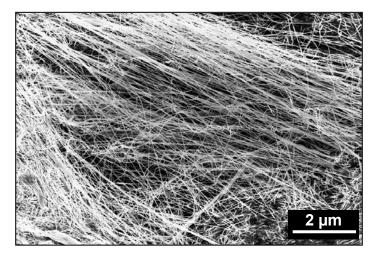
3D Graphene-Foam Electrodes

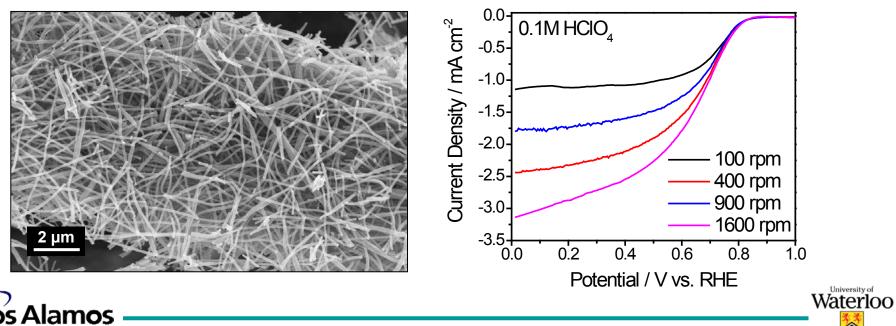
500 1000 1500 2000 2500 3000 Raman Shift / cm⁻¹

- 3D graphene-based structures promising high catalyst utilization without giving away good electron conductivity
- Methodology possibly adaptable to heattreated non-precious metal ORR catalysts under development at LANL


Materials synthesis in progress; ORR performance to be evaluated soon.

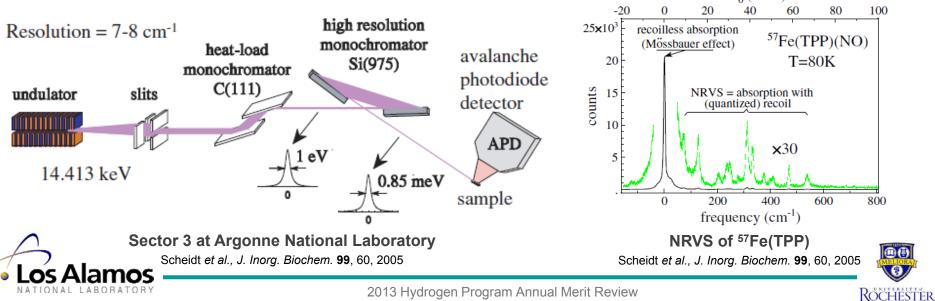
Raman Mapping of Electrode


Catalyst Development: Electrospun Catalysts and 3D Electrodes


Principle of Electrospinning

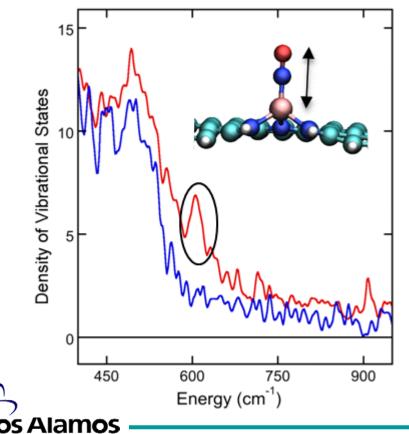
Heat-Treated Fe-PAN Nanofiber Catalyst

Polyacrylonitrile (PAN) Nanofibers



RDE: 0.1 M HClO₄, 10 mV s⁻¹, 25°C

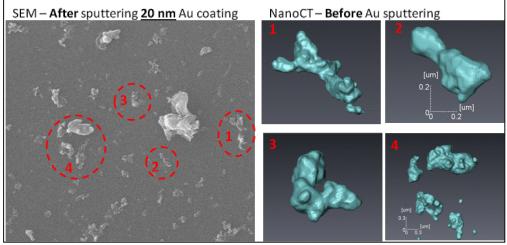
Catalyst Characterization: NO as a Molecular Probe; NRVS

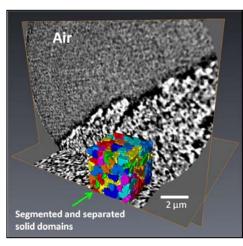

- Nitric oxide, NO_(g), an O₂-analog forming stable, non-reactive complexes with Fe used to study • O₂ binding to Fe sites in metalloenzymes
- When combined with Fe-specific spectroscopic methods, the O₂-analog approach provides •
 - insight into the electronic/geometric structure of O₂-binding Fe site
 - mechanism of O₂ activation/reduction (when combined with DFT methods)
- Nuclear Resonance Vibrational Spectroscopy (NRVS) an ideal technique for studying surface • iron probed by NO_(a)
 - Vibrational technique capable of providing complete set of bands corresponding to the motion of Mößbauer-active nuclei, i.e., ⁵⁷Fe
 - Combines nuclear excitation (classical Mößbauer effect) and molecular vibrations
 - Ultimate selectivity: Only vibrational modes of the probe ⁵⁷Fe nucleus contribute to the signal
 - Not subject to the selection rules of optical methods (e.g., Raman) \rightarrow complete vibrational \checkmark spectrum, including Fe-ligand vibrations $E-E_0$ (meV)

- Perturbation of some fraction of Fe sites found to occur upon NO_(q) treatment
- Fe vibrational changes observed in both the low energy region (< 400 cm⁻¹) and in the higher energy region (> 500 cm⁻¹)

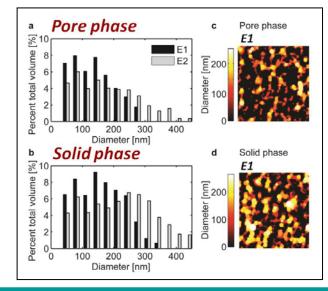
Surface Fe found to be present in PANI-Fe-C ORR electrocatalyst

NRVS: Electrochemically reduced (blue) and reduced plus NO-treated (red) PANI-Fe-C catalyst

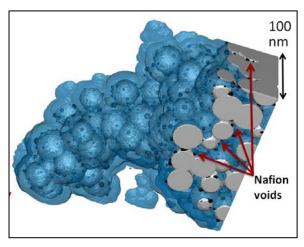

- Most distinct NRVS peak at ~ 606 cm⁻¹ (circled)
- 3N-coordinated Fe above C monovacancy yielding DFT Fe-NO bond stretch of ~ 608 cm⁻¹ (consistent with NRVS); Fe ~1.1 Å above the C plane with no ligand and by ~1.2 Å with O₂ attached)
- Fe-NO bond stretch frequency from DFT for the bi-nuclear (5N-2Fe) site giving ~ 617 cm⁻¹ (consistent with NRVS within experimental error)
- 4N-coordinated Fe in C bivacancy yielding DFT Fe-No bond stretch of ~ 690 cm⁻¹ (poor agreement with NRVS)


Electrode Design: Nanoscale X-Ray Computer Tomography Imaging

Simultaneous 3D Imaging of Many Dispersed Catalyst Aggregates from Ink

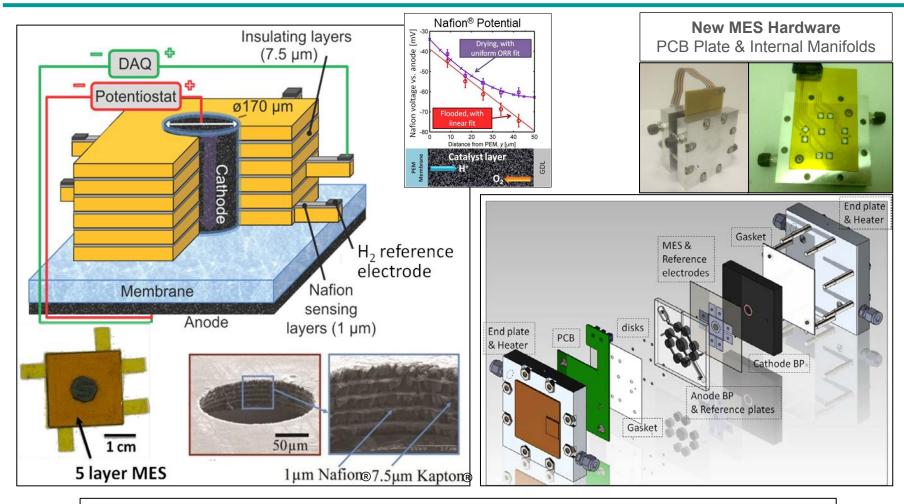


Electrode Structure



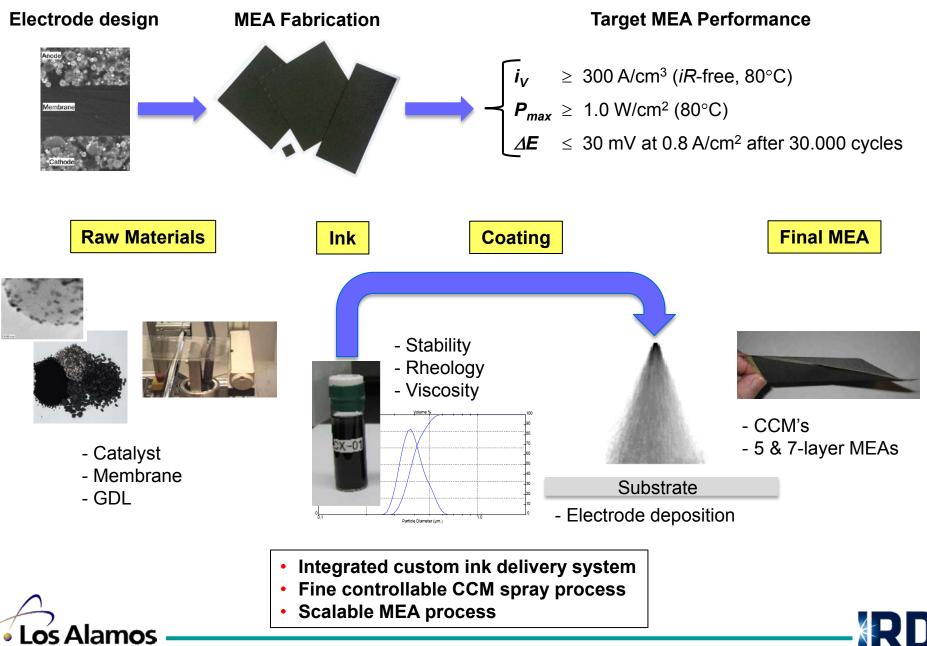
LABOBATOBY

Morphology Statistics


Particle-Scale Reconstruction

2013 Hydrogen Program Annual Merit Review

Electrode Design: Microstructured Electrode Scaffold (MES) Diagnostics


- Micro-sensor array for measuring spatiotemporal, through-plane distribution of potential, conductivity, and reaction rate
- Ultramicroelectrode measurements of O₂ concentration by flux interrupt method
- New hardware for improved measurements with resolution approaching 2 μm
- New in situ current-probe technique for conductivity determination

OS

Carnegie Mellon University

2013 Hydrogen Program Annual Merit Review

MEA Fabrication: Targets and MEA Fabrication Approach

Collaborations

- Seven organizations with highly complementary skills and capabilities in catalyst development, electrode structure design, materials characterization, MEA fabrication, fuel cell system development and commercialization:
 - Los Alamos National Laboratory and Oak Ridge National Laboratory direct DOE-EERE contracts
 - Carnegie Mellon University, University of Rochester, University of Waterloo, General Motors, and IRD Fuel Cells – *subcontracts to Los Alamos National Laboratory*
- Collaborations outside Fuel Cell Technologies Program (preliminary):
 - ✓ CellEra, Cesarea, Israel
 - ✓ Pajarito Powder, Albuquerque, New Mexico
 - Chevron Energy Technology Company, Richmond, California

Heat-Treated Catalysts and Alternative Supports:

- Develop and optimize a multi-nitrogen-precursor heat-treated ORR catalysts with high volumetric activity and four-electron selectivity
- Synthesize non-PGM catalysts supported on highly-graphitic carbon(s) as a possible way of enhancing active-site density and improving durability
- Evaluate validity of metal-free approach in ORR electrocatalysis

Non-Pyrolyzed Phthalocyanine-Derived Catalysts:

- Synthesize and characterize Fe- and one Co-based phthalocyanine-derived catalysts with improved ORR activity ($E_{\frac{1}{2}} \ge 0.70$ V *vs.* RHE) and high four-electron selectivity; determine stability
- Initiate fuel cell testing of non-heat-treated ORR catalysts

Performance Durability:

- Develop durability and stress-test cycling protocols specific to non-PGM catalysts, (including a realistic potential/voltage window under specific environmental conditions of humidity, reagent stoichs, etc.)
- Optimize accelerated corrosion test to mimic decay mechanisms in long-term stack
- Propose activity/recovery cycles and evaluate their effectiveness

Characterization:

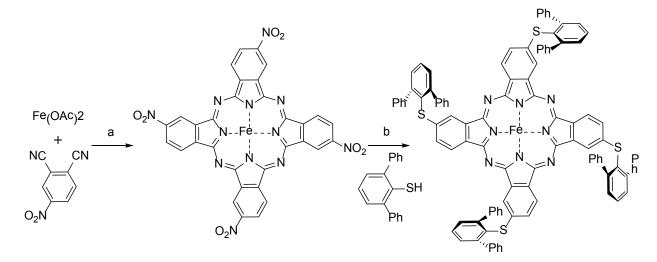
- Validate surface-probe approach in identifying ORR active site(s)
- Implement advanced catalyst characterization methods (NRVS, MCD, Mößbauer, MES, low-voltage aberration-corrected STEM, high-resolution SEM/STEM, ICP, XRF, nano-XCT, X-ray absorption, TGA, porosimetry, etc.)

Active Site Determination:

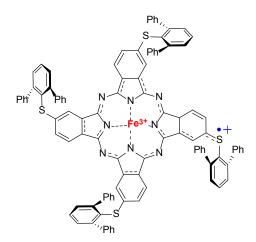
 Validate surface-probe approach in non-PGM catalysis using one of wellperforming early catalyst formulations

Electrode Design and Modeling:

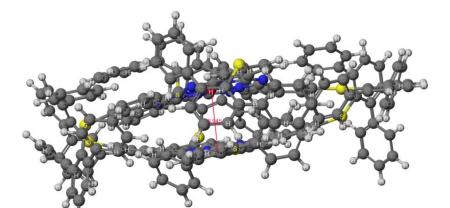
- Initiate predictive model for non-PGM catalyst layers (ORR activity, conductivity, and O₂ transport), based on knowledge acquired in earlier non-PGM studies at GM; perform preliminary model validation; refine model in conjunction with CMU's MES studies
- Adopt CMU's agglomerate model to non-PGM cathodes
- Complete implementation of the pore-scale model


MEA Fabrication and Optimization:

Demonstrate Generation-1 spray-coated MEA with non-PGM cathode



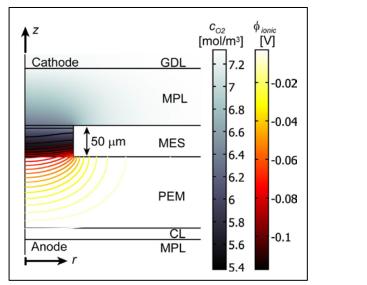
Back-Up Slides

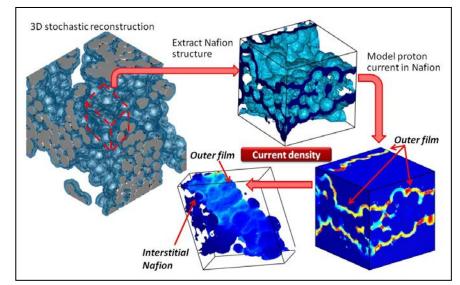

Catalyst Development: Synthesis of Phthalocyanine-Derived ORR Catalyst

Synthesis of Fe-SPc: (1) Fe(OAc)₂, quinoline, 210°C; (2) K₂CO₃, N-methylpyrrolidone, 180°C

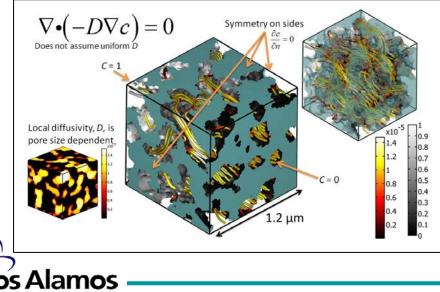
Providing electron storage sites

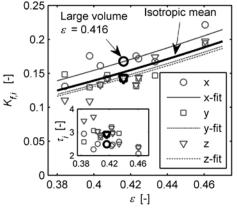
Stacking pattern of Fe-SPc (6.945 Å Fe-Fe distance) – possible active site configuration




Waterloo

Electrode Design: Computational Electrode Modeling


Macro-Modeling of Electrode and MEA


Particle-Scale Coupled Transport-Reaction Simulations

Effective Transport Properties from Transport Simulations on 3D Nano-XCT Geometry

Statistics for (i) porosity, (ii) formation factor, and (iii) tortuosity heterogeneity and anisotropy

2013 Hydrogen Program Annual Merit Review

- DOE-EERE Fuel Cell Technologies Office
- Technology Development Manager: Dr. Nancy Garland

