Fuel Cell MEA Manufacturing R&D

National Renewable Energy Laboratory

Michael Ulsh

May 15, 2013

This presentation does not contain any proprietary, confidential, or otherwise restricted information

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.
Overview

Timeline
Start: July 2007
End: Project continuation and direction determined annually by DOE
% complete: N/A

Budget
Funding received in FY12
- $619,000 (includes $130,000 to partners)
Planned funding in FY13
- $575,000 (includes $160,000 to partners)

Barriers
<table>
<thead>
<tr>
<th>Barriers</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>E: Lack of Improved Methods of Final Inspection of MEAs</td>
<td>$21/kW (2017) at 500,000 stacks/yr</td>
</tr>
<tr>
<td>K: Low Levels of Quality Control</td>
<td></td>
</tr>
</tbody>
</table>

Funded Partners
Lawrence Berkeley National Laboratory
Colorado School of Mines
New Jersey Institute of Technology
DJW Technology
Relevance: NREL addresses most MYPP milestones

<table>
<thead>
<tr>
<th>Task 6: Quality Control and Modeling and Simulation</th>
<th>Task 1: Membrane Electrode Assemblies</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2 Develop defect detection techniques in pilot scale applications for manufacturing MEAs and MEA components. (4Q, 2013)</td>
<td>Reduce the cost of manufacturing MEAs by 25%, relative to 2008 baseline of $126/kW (at 1,000 units/year). (4Q, 2013)</td>
</tr>
<tr>
<td>6.3 Establish models to predict the effect of manufacturing variations on MEA performance. (4Q, 2014)</td>
<td>Develop processes for direct coating of electrodes on membranes or gas diffusion media (4Q, 2014)</td>
</tr>
<tr>
<td>6.4 Demonstrate methods to inspect full MEAs and cells prior to assembly into stacks (4Q, 2014)</td>
<td>Develop processes for highly uniform continuous lamination of MEA components (4Q, 2014)</td>
</tr>
<tr>
<td>6.5 Validate and extend models to predict the effect of manufacturing variations on MEA performance. (4Q, 2014)</td>
<td>Develop cell manufacturing processes that increase throughput and efficiency and decrease complexity and waste (4Q, 2015)</td>
</tr>
<tr>
<td>6.6 Demonstrate continuous in-line measurement for MEA and MEA component fabrication. (4Q, 2015)</td>
<td>Demonstrate processes for direct coating of electrodes on membranes or gas diffusion media (4Q, 2016)</td>
</tr>
<tr>
<td>6.7 Develop methods to mark identified defects for later removal (4Q, 2015)</td>
<td>Demonstrate processes for highly uniform continuous lamination of MEA components (4Q, 2016)</td>
</tr>
<tr>
<td>6.8 Develop and demonstrate techniques and diagnostics for automated or continuous in-line measurement of high temperature cells and sub-assemblies during fabrication. (4Q, 2016)</td>
<td>Develop fabrication and assembly processes for PEM fuel cell MEA components leading to an automotive fuel cell system that cost $30/kW. (4Q, 2017)</td>
</tr>
<tr>
<td>6.9 Develop correlations between manufacturing parameters and manufacturing variability, and performance and durability of MEAs (4Q, 2017)</td>
<td>Develop fabrication and assembly processes for membranes that operate at T > 150°C with a projected durability of 60,000 hours. (2Q, 2019)</td>
</tr>
</tbody>
</table>
Relevance: Cost of Poor Quality

• “Just four sequential process steps with 90% yields would increase costs by 30%...”

~$12/kW cost increase (at 500,000 units/yr) relative to total stack cost target of $21/kW

Preliminary Strategic Analysis Inc./NREL analysis using SA Inc’s automotive fuel cell cost model, 2012.
Collaborations

- **NREL National Center for Photovoltaics/New Jersey Institute of Technology**: diagnostics development

- **Lawrence Berkeley National Lab**: model development and integration

- **Colorado School of Mines**: diagnostic development, test method development and defect analysis

DOE Manufacturing projects
Approach

- Understand quality control needs from industry partners and forums
- Develop diagnostics
 - Use modeling to guide development
 - Use in-situ testing to understand the effects of defects
- Validate diagnostics in-line
- Transfer technology

<table>
<thead>
<tr>
<th>Date</th>
<th>Milestone/Deliverable</th>
<th>Complete</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/13</td>
<td>Prove feasibility of through-plane IR/DC using continuous sheet</td>
<td>100%*</td>
</tr>
<tr>
<td>6/13</td>
<td>Prove feasibility of optical reflectometry for detection of surface defects on SOFC tube cells</td>
<td>90%</td>
</tr>
<tr>
<td>8/13</td>
<td>Go/No-go decision on feasibility of implementing IR/RFT on web-line</td>
<td>75%</td>
</tr>
</tbody>
</table>

* Proved using CCM sheet
Approach: Prologue

• Last year we focused on web-line demonstration

• This year we’re focusing more on exploratory studies
 o Improving sensitivity of current techniques
 o Expanding techniques to new materials
 o Exploring feasibility of new diagnostic concepts
 o Developing new in situ techniques/capabilities
Technical Accomplishments:

- **Experimental electrodes with direct-coated ionomer**
 - From initial trials of Gore’s DOE-funded process improvements

- **Difficult to measure black surfaces**

- **Inspection of surface structure**
Technical Accomplishments:

• Actual defects on GDE sheet
 o From initial trials of BASF’s DOE-funded process improvements

• Black-on-black defects difficult with commercial vision systems

• Detected defects of dimension ~1 mm
Technical Accomplishments:

• Studied fired tubes (anode + electrolyte)
• Used standard line camera setup with manual rotation of tube
• Detected defects of ~1 mm dimension

Optical diagnostic demonstrated on tube cells

$\frac{1}{4}''$ diameter tube

$\frac{3}{4}''$ diameter tube
Technical Accomplishments:

- Developed dual light source methodology
 - Improved sensitivity to low reflectance materials (membrane)
 - Improved detection of defects
- Developed new conveyor-based motion system
 - Applicable for rigid plate materials
 - Leveraging NREL PV group
- Investigating use of band-pass filters to separate surface from bulk data
Technical Accomplishments:

- GDL/CCM cracks in line with electrical field hard to detect
- Investigated non-uniform excitation field
- LBNL modeling indicates improvement in detectability
- Modeling used to optimize excitation geometry

Modeling to improve IR/DC diagnostic

Uniform excitation provides very small temperature rise

Non-uniform excitation enables detection of $\Delta T > 2 \, ^\circ C$
Technical Accomplishments:

• Validated equipment and operating parameters with experimental material made on coating line
• Designed wider roller system and camera stand for deployment
• Plan to deploy on Ion Power catalyst coating line

Agreement on first industrial deployment of IR/DC
Technical Accomplishments:

Effect of H_2 concentration

- Initial reactive gas mix (0.4% H_2) chosen based on 10% LFL
- LBNL modeling predicts improvement by increasing H_2 concentration
- Performed experiments with 2% H_2 / 1% O_2 / N_2 balance (<LFL, <5% O_2)
 - Confirmed predicted increase in ΔT
 - Showed that detection time decreases

Predictive modeling leads to improved IR/RFT detectability
Technical Accomplishments:

Predictive modeling leads to improved IR/RFT detectability

Comparison case: 1500 sccm flowrate, nominal loading 0.2 mg/cm²

0.0625 cm² with 50% reduction defect:

- Undetected at 0.4% H₂ concentration
- Detected ($\Delta T = 1°C$) in less than 1 second at 2% H₂

Graphs:*

- **Left Graph:**
 - Comparison of pristine and defect electrodes under varying H₂ concentrations.
 - Pristine electrode shows lower ΔT across all concentrations.

- **Middle Graph:**
 - Graph showing peak temperature (T_{max}) variation with H₂ concentration.
 - Experimentally measured values compared with model predictions.

- **Right Graph:**
 - Defect electrode peak intensity (ΔI) under different H₂ concentrations.
 - Demonstrates significantly higher ΔI at 2% H₂ concentration.

Defect electrode: 1 cm², 50% reduction

Technical Details:

- **Profile - Line 1**
 - Temperature profile along a line.
 - Max: 28.5°C, Min: 25.2°C, Av: 27.5°C
Technical Accomplishments:

Prototype air knife

- Home-built knife for determination of feasibility
- 115 holes, 0.5 mm diameter, 2 mm hole spacing
- Enables studies of flowrate, flux, width, knife/substrate separation
- Initial static experiment successful

Demonstrated IR/RFT in open environment
Technical Accomplishments:

Demonstrated IR/RFT in open environment

Prototype
Air Knife Temperature Profile: Static Sample

Next step to demonstrate with moving substrate
Technical Accomplishments: New Diagnostic Concept

Impedance Measurement of Ionomer:Carbon Ratio

- Does electronic capacitance change with I:C ratio?
- CCMs with 0.4/0.4, 0.4/0.8, 0.8/0.8 I:C ratios investigated (0.2/0.2 mg Pt/cm²)
- AC perturbation 0.1 – 10 kHz, 0.5 V_{pp}
- Dependence of electronic capacitance confirmed
- Ongoing work to determine if sensitivity can be improved to detect smaller variations of I:C ratio
Technical Accomplishments:

What is the threshold for measurement of electrode bare spots?
• Initial performance
• Aging

Spatial Performance at 1.0 A/cm², Cathode defect, 150/150 kPa, 1050/3500 sccm H₂/air, 100/50% RH

Studied electrode bare spot initial performance effects

0.5 cm² = 1% uncoated area

0.13 cm² = 0.26% uncoated area

Pristine

Data shown last year
Technical Accomplishments:

- No effect of bare spots on total cell performance
- Reduction of local performance at the defect location (as a function of defect size)
- Based on initial performance at selected conditions, these defects don’t need to be detected by QC diagnostics

Studied electrode bare spot initial performance effects
Technical Accomplishments:

• Can we detect and spatially resolve failure due to defects?
• Select (with LANL) and validate accelerated stress test
 - Combined mechanical/chemical AST
• Use OCV with anode overpressure as failure indicator
• Developed new hardware to spatially detect hydrogen crossover

AST Conditions

<table>
<thead>
<tr>
<th>AST Duration</th>
<th>24 hrs/step</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Temp</td>
<td>80°C</td>
</tr>
<tr>
<td>H₂/Air Gas</td>
<td>2000/2000 sccm</td>
</tr>
<tr>
<td>Pressures</td>
<td>150/150 kPa</td>
</tr>
<tr>
<td>Humidification</td>
<td>90/90 and 20/20°C Dew Points switching every 2 min</td>
</tr>
</tbody>
</table>

![Graph showing OCV Analysis](image-url)

- **OCV Analysis**
 - Cell Voltage during 0-24 hrs AST
 - Cell Voltage during 24-48 hrs AST

- **OCV & IR Analysis**

![Graph showing OCV & IR Analysis](image-url)

- **No failure**
- **Failure!**

Studied electrode bare spot aging effects
Technical Accomplishments:

- Applied AST to pristine MEAs and MEA with bare spot
- Observed failures at:
 - Edge of active area
 - Location of defect
- **Based on aging, this bare spot needs to be detected by QC diagnostics!**
- Next steps:
 - ‘Tone down’ AST to focus on onset of failure point
 - Protect edge of active area to focus on effects of defect
 - Reduce defect size to identify threshold

Studied electrode bare spot aging effects
Future Work

• Work toward deployment of diagnostics on partner manufacturing lines, while continuing to optimize their performance

• Complete feasibility study for deployment of IR/RFT diagnostic in-line

• Continue to study capacitance and other new diagnostics concepts, per industry inputs

• Continue to integrate modeling results to support diagnostic development

• Emphasize modeling and in situ testing of effects of defects (MYPP milestones)

• Refine protocols and techniques and continue aging and spatial failure studies of electrode and other MEA defects

• Complete specific partner studies and continue to support the industry
Summary

- Highlighted relevance of cross-cutting QC development via cost of poor quality analysis
- Optical Reflectometry:
 - Demonstrated on CCMs (Gore), GDEs (BASF), tubular SOFCs (AMI, Acumentrics)
 - Initiated modifications to improve sensitivity
- IR/DC:
 - Modeled nonuniform excitation to improve detection
 - Initiated effort to deploy on commercial coating line (Ion Power)
 - Continued development of through-plane method for MEA shorting
 - Studied potential noncontact excitation sources
 - Studied quality measurements of electrolyzer electrodes (Proton OnSite)
- IR/RFT:
 - Demonstrated improved detectability via higher H₂ concentration
 - Demonstrated open-environment operation with prototype air knife
- Explored CCM capacitance vs. I:C ratio as a potential new diagnostic
- In situ:
 - Determined local vs. overall performance effects of electrode bare spots
 - Developed new hardware and proved methods for aging and spatial failure detection
 - Completed detailed performance comparison of ultrasonic vs. thermal pressed MEAs (RPI)
Acknowledgement

NREL
Michael Ulsh
Guido Bender
Huyen Dinh
Bhushan Sopori
Clay Macomber

CSM
Prof. Andy Herring
Austin Manak
Prof. Jason Porter
Daniel Bittinat

LBNL
Adam Weber
Prodip Das

NJIT
Srinivas Devayajanam
Rene Rivero

DOE
Nancy Garland
TECHNICAL BACK-UP SLIDES
PEM Electrolyzer Electrodes

- Experimental Proton OnSite electrodes made by simpler manufacturing process
- Different morphology renders current resistance QC test unstable
 - In situ testing good, but
 - QC test unusable
- Evaluated electrodes for uniformity
 - Part-to-part variability
 - Effects of orientation
 - In-plane conductive discontinuity
Noncontact Excitation

- Rollers typically used for electrical excitation
 - Contact, but not ‘Additional Contact’
- However, minimization of contact may be desired, e.g., for extremely thin layers (NSTF)
- Scoping performed with home-built Eddy Current ring
- GDL sample tested successfully at commercial eddy current supplier
- Also initial experiment and research into microwave as source
We completed in situ testing of RPI MEAs, comparing ultrasonic pressing with traditional hot-pressing

- Sidedness
- Comparison to Thermal Pressing

"NREL results and conclusions were similar to many of RPI’s own and provided deeper insight into how ultrasonic bonding of low-temperature MEA components affects cell performance. RPI will be using these results to assist in optimizing the process.”