Market Transformation
- Session Introduction -

Pete Devlin
Goals and Objectives

GOALS

• Ensure continued technology utilization growth for domestically produced hydrogen and fuel cell systems

• Lower life cycle costs of fuel cell power by identifying and reducing deployment barriers

OBJECTIVES

• Catalyze key implementation projects and partnerships with state and local governments and other stakeholders

• Increase domestic market penetration by standardizing and stimulating institutional and financial market practices

• Increase data analysis associated with siting and deployment (e.g., insurance, permitting, and installation)

Data stems from research conducted by the California Fuel Cell Partnership and Pike Research
Challenges

- To test emerging applications at the Technology Readiness Level (TRLs) 7-9 level to expand user and servicing expertise
- To test new technology applications in user operating conditions to establish baseline energy efficiency and reliability performance and determine commercial viability

Examples:

A 1-kW fuel cell system providing power for this FAA radio tower near Chicago
(Photo courtesy of ReliOn)

Material Handling Equipment at work in U.S. airports
(Photo courtesy of Hydrogenics)
Commercial Industry Fuel Cell Deployments (preliminary assessment)

- FY 08: Truck Refer APUs (TRL 6)
- FY 09: Material Handling Equipment (MHE) (TRL 6)
- FY 10: Fuel Cell Hybrid Medium Duty (MD) Truck (TRL 7)
- FY 11: MHE (TRL 7)
- FY 12: Fuel Cell Buses (FCBs) (TRL 6)
- FY 13: Portable Fuel Cell Power (TRL 7)
- FY 14: Emergency Backup Power (TRL 7)
- FY 15: Fuel Cell Electric Vehicles (FCEVs) (TRL 7)
- FY 16: Stationary Power (TRL 7)
- FY 17: Emergency Backup Power (TRL 8)
- FY 18: Fuel Cell Electric Vehicles (FCEVs) (TRL 8)

Present Day: microCHP (TRL 8/9)
Challenges

• To develop strategies to mitigate commercial risks and develop new approaches to ensure high hydrogen and system utilization and reliability under mass market penetration scenarios

• To obtain data from operating experience and develop replicable business cases
Market Transformation Budget

FY 2013 Appropriation = $3M
FY 2014 Request = $3M

EMPHASIS

- New Ground Support Equipment
 Awards were made in January 2013
- Planning multiple FOAs over the next few FYs to enhance leveraging of deployments with DOE offices and other agencies
- Continue developing models, tools and templates for early markets

* Subject to appropriations and project go/no go decisions
Market Transformation Fact Sheets

DOE-DOD Emergency Backup Power Fuel Cell Installations
June 2012

Highlights from DOE’s Fuel Cell Recovery Act Projects
May 2012

Market Transformation Program Fact Sheet
April 2013

World’s First Tri-Gen Energy Station – Fountain Valley
March 2013

Go to: http://www1.eere.energy.gov/hydrogenandfuelcells/pubs_educational.html
• Collected ~172,000 hour data DMFC-powered lift truck operations in 4 locations reducing unscheduled maintenance by 36% (NREL)

• Developed and installed electrolyzer system for geothermal renewable hydrogen (RH2) fuel demo (HNEI)

• Developed and installed LFG gas clean for industry RH2 fuel cell lift truck demo (SCRA/BMW)

• Installed and collected data on 15 Micro-CHP systems for light commercial facilities with availability of 93.4% (PNNL)
Other FY12-13 Accomplishments

- Initiated new IWG committee (Advanced Vehicles) and identified a Fed Fleet strategy
- Awarded HDV Electric Transportation Technology Projects with VTO
- Awarded Ground Support Equipment Project (Plug Power)
- Started 2 Refer APU projects (PNNL)
- Identified 4 MW of projects through a government wide procurement process
- Started Site Study with GSA and FEMP for refueling station
- Completed model and simulation analysis for on board recharging of eMDVs and eLDVs

C3-6 Delivery Truck

C8 Drayage Truck
Accomplishments: Backup Power Operation Summary
2009 Q1 – 2012 Q4

Systems are operating reliably in 19 states. Reasons for unsuccessful starts include an e-stop signal, no fuel, and other system failures.

1.86
Installed capacity in MW

806
Systems in operation*

4-6
Average site capacity in kW

1,796
Start attempts

99.6%
Successful starts

1,153
Operation hours

65
Continuous run hours demonstrated

*Not all systems have detailed data reporting to NREL
Validation of MHE is based on real-world operation data from high-use facilities.

<table>
<thead>
<tr>
<th>Units in operation*</th>
<th>Average operation hours between fills</th>
<th>Hydrogen fills</th>
<th>Hydrogen dispensed in kg</th>
<th>Average fill amount in kg</th>
<th>Average fill time in minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>490</td>
<td>4.6</td>
<td>1,445,558</td>
<td>246,997</td>
<td>187,426</td>
<td>0.6</td>
</tr>
</tbody>
</table>

*One project has completed.
Accomplishments: Completed MHE Cost of Ownership Report*

Cost advantage per unit is ~$2,000/year for the average high-use facility with Class I and II fuel cell lift trucks analyzed by NREL.

Key Findings
- Cost advantages dependent on deployment size and use (i.e., multi-shift operation per day)
- H₂ fuel cell cost advantages in maintenance, warehouse infrastructure space, and refueling labor cost
- H₂ fuel cell cost disadvantages in infrastructure and fuel cell cost and hydrogen cost

Report Sections
- Inputs, assumptions, and results for Class I/II and Class III
- Sensitivity study
- Intensive deployment scenario

*Publication expected 04/2013
Accomplishments: Study of FC Voltage Degradation Against 10,000 Hours

Fuel Cell Stacks Projected Hours to 10% Voltage Degradation

40% of stacks have projected hours to 10% voltage degradation > 10,000 hours.

1) Projection using field data, calculated at high stack current, from operation hour 0.
Projected hours may differ from an OEM's end-of-life criterion and does not address "catastrophic" failure modes.
2) Indicates stacks that are no longer accumulating hours either a) temporarily or b) have been retired for non-stack performance related issues or c) removed from DOE program.
3) Projected hours limited based on demonstrated hours.
Summary

Key milestones and future plans

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete multi-site backup power award with DOD, NASA, and NPS</td>
<td>Complete Government Facilities Procurement Guide</td>
<td>Installed and tested Renewable H₂ Plant (Hawaii)</td>
<td>Complete MicroCHP Business Case Analysis</td>
<td>GSE Deployment and Business Case Analysis</td>
<td>Deploy Test and Business Case for BEVx</td>
<td>Deployment and Finance Test for 1st Gen FCEVs</td>
</tr>
<tr>
<td>Complete 3 DOD-DOE Workshops</td>
<td>Awarded with VTO¹ ETT Projects</td>
<td>Data Collection & Assessment of DMFC Powered Lift Trucks</td>
<td>eHDVx – Business Case Analysis</td>
<td>Financing Methods Test for Mobile Power / Lighting</td>
<td>Deployment Test for LDVs in Fed fleets</td>
<td>Deployment Test for Renewable H₂ Refueling</td>
</tr>
<tr>
<td>Complete MYRD&D Plan</td>
<td>Awarded GSE Project</td>
<td>Published MHE and Backup Power Business Cases</td>
<td>MHE Refueling Case Study</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Started eHDVx Demos with VTO</td>
<td>Award eMDVx demo project (s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹Vehicle Tech Office
Participating Organizations

Industry:
- Plug Power
- Gas Technology Institute
- Clear Edge
- Oorja Protonics
- BMW
- Nuvera

Laboratory:
- Pacific Northwest National Laboratory
- National Renewable Energy Laboratory
- Lawrence Livermore National Laboratory
- Sandia National Laboratory
- Argonne National Lab
- Los Alamos National Laboratory

Government:
- Office of Naval Research
- Army CERL
- SCRA
- DOT
- FAA
- NASA
- NPS
- CCAT
- GSA

University:
- Hawaii Natural Energy Institute
For More Information

Market Transformation Team

DOE
Pete Devlin
Market Transformation and Intergovernmental Coordination Manager
202-586-4905
peter.devlin@ee.doe.gov

Nancy Garland
202-586-5673
nancy.garland@ee.doe.gov

Jim Alkire
720-356-1426
James.alkire@go.doe.gov

National Renewable Energy Laboratory Support:
John Christensen
703-391-2075
jchriste1@comcast.net

Technical Support:
Greg Moreland
240-499-4434
greg_moreland@sra.com

Kristen Nawoj
202-287-6319
kristen.nawoj@ee.doe.gov
Session Instructions

- This is a review, not a conference.
- Presentations will begin precisely at scheduled times.
- Talks will be 20 minutes and Q&A 10 minutes.
- Reviewers have priority for questions over the general audience.
- Reviewers should be seated in front of the room for convenient access by the microphone attendants during the Q&A.
- Please mute all cell phones and other portable devices.
- Photography and audio and video recording are not permitted.
Reviewer Reminders

- Deadline to submit your reviews is Friday, May 24th at 5:00 pm EDT.

- ORISE personnel are available on-site for assistance.
 - **Reviewer Lab Hours:**
 - Monday, 5:00 pm – 8:00 pm (Gateway ONLY)
 - Tuesday – Wednesday, 7:00 am – 8:00 pm (Gateway)
 - Thursday, 7:00 am – 6:00 pm (Gateway)
 - Tuesday – Thursday, 7:00 am – 6:00 pm (City)

- **Reviewer Lab Locations:**
 - Crystal Gateway Hotel—Rosslyn Room (downstairs, on Lobby level)
 - Crystal City Hotel—Roosevelt Boardroom (next to Salon A)