Solarthermal Redox-based Water Splitting Cycles

Christopher Muhicha, Janna Martineka, Darwin Arifina, Kayla Westona, Kimberly Zimmera, Rachel Vigera, Charles Musgravea, Judy Netterb, Anthony McDanielc, and Alan Weimer (P.I.)a

aUniversity of Colorado at Boulder
bNational Renewable Energy Laboratory
cSandia National Laboratories

May 16, 2013

Project ID No. PD028

This presentation does not contain any proprietary, confidential or otherwise restricted information.
Overview

Timeline

• Start: 6-1-2005
• End: 9-30-2013
• 80% completed

Budget

• Total Project Funding
 2005-2011: $1,210K DOE
 $347,500 Cost Share
• Funds received in FY12
 $217,000 (subcontract from SNL)
 $ 54,250 Cost Share
• Planned FY2013 Funding
 $250,000 (subcontract from SNL)

Barriers

U. High-Temperature Thermochemical Technology

V. High-Temperature Robust Materials

W. Concentrated Solar Energy Capital Cost

X. Coupling Concentrated Solar Energy and Thermochemical cycles

Partners

National Renewable Energy Laboratory (NREL)
Sandia National Laboratories (SNL)
• Objective - Develop and demonstrate robust materials for a two-step thermochemical redox cycle that will integrate easily into a scalable solar-thermal reactor design and will achieve the DOE cost targets for solar hydrogen: ($14.80/kg H₂ in 2015; $3.70/kg H₂ in 2020; ultimately $2/kg H₂)

Milestone – “Synthesize a cobalt ferrite/alumina “hercynite” active material by ALD using polymer templates. Demonstrate isothermal redox water-splitting in a stagnation flow reactor at a temperature of 1350°C yielding a H₂ production per gram of total mass of active material > 100 µmoles/g active material.” (> 200 µmoles/g active material achieved in 3/2013)
Approach

- Ceria redox is considered base material for comparative water splitting (WS) performance – fast kinetics & robust
- Evaluate “doped” CeO$_2$, compared to base
- Evaluate “hercynite cycle” materials, i.e. ferrite/alumina reaction
 - Temperature Swing redox (TS)
 - Isothermal redox (IS)
- Model multi-tube fixed reactor configuration for efficiency estimates & “best” design
- Evaluate effect of increased pressure (P) and temperature (T) on increasing the slower oxidation rates measured at Sandia National Labs in 2012
- Validate high productivity “hercynite cycle” data obtained on-sun at NREL in 2012 (145 µmole H$_2$/g total)
Accomplishments & Progress

Stagnation Flow Reactor for Materials Characterization

- CeO$_2$
- “Hercynite”
- T-Swing redox
- Isothermal redox

O$_2$ Analyzer
Steam Generator
Furnace 25 – 1700°C
Ceria 1500°C/1200°C (redox)

Water Injection

[H₂O] = 50%
P = 760 Torr

159.1 15.7 µmoles H₂/g

H₂ generated: 147.05 µmol/g

H₂ generated: 153.47 µmol/g

H₂ generated: 176.90 µmol/g

420 s
Ceria 1350°C/1000°C (redox)

[H$_2$O] = 50%
P=760 Torr

16.4 3.6 µmoles H$_2$/g

H$_2$ generated:
20.18 µmol/g

H$_2$ generated:
16.10 µmol/g

H$_2$ generated:
13.03 µmol/g
Zr Substitution Beneficial to Reduction

Experiments run at Sandia National Laboratories
Zr Substitution Beneficial to Oxidation

Experiments run at Sandia National Laboratories
“Hercynite Cycle”

MFe$_2$O$_4$ + 3Al$_2$O$_3$ → H$_2$ + O$_2$ + MAI$_2$O$_4$ + 2FeAl$_2$O$_4$

- Reduced and oxidized moieties are stabilized in two different compounds;
- Compound formation is more thermodynamically favorable than solid solution formation;
- Higher T and P should increase oxidation rate.

M (typical) = Co or Ni
“Hercynite Cycle” Robustness

Chemistry Validated via Raman:
Micrographs of Active Nanostructured “Hercynite” Materials

Cross-sectioned Particle
Skeletal γ-Al$_2$O$_3$
(80 m2/g; 1 cm3/g pore volume);

19.8 wt% CoFe$_2$O$_4$ on Al$_2$O$_3$

Reduction temperature is dictated by reduction enthalpy of the active material

However water is not reacting in the gas phase, need to consider three phases:
- Gas, Surface and Solid

\[\Delta G = P \Delta V - T \Delta S + \sum_{j=1}^{M} \mu_j \Delta N_j \]

\(N_x \) on the surface is related to \(P_x \):

\[N_x = a \cdot P_x \]

By altering pressure, the free energy can become favorable

\[\mu_{MO_{x-1}} N_{MO_{x-1}} + \mu_{H_2O} N_{H_2O} = \mu_{MO_x} N_{MO_x} + \mu_{H_2} N_{H_2} \]
“Hercynite Cycle” Isothermal Water Splitting

\[T_{\text{red}} = T_{\text{ox}} = 1350 \, ^{\circ}\text{C} \]

760 Torr

50% \([\text{H}_2\text{O}]\]

1 hour reduction

25 min oxidation

47% Active

102 \pm 18 \text{ } \mu\text{mol H}_2/\text{g}

All material has been aged by running > 150 water splitting cycles prior to use.
Hercynite Isothermal Summary @ 1350°C

<table>
<thead>
<tr>
<th>% [H₂O]</th>
<th>P (_{\text{H₂O}}) (Torr)</th>
<th>(\text{H}_2) production (^a) ((\mu\text{mol/g})) (^b)</th>
<th>Peak rate (^b) ((\mu\text{mol/g/s}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>253.3</td>
<td>40 ± 9</td>
<td>0.06 ± 0.02</td>
</tr>
<tr>
<td>40</td>
<td>325.7</td>
<td>72 ± 8</td>
<td>0.15 ± 0.07</td>
</tr>
<tr>
<td>50</td>
<td>380</td>
<td>102 ± 18</td>
<td>0.35 ± 0.18</td>
</tr>
</tbody>
</table>

\(^a\) Error was calculated at 95% confidence level.
\(^b\) Rates represent \(\mu\text{mol H}_2/\text{g}\) of total material. Multiply by 2.13 to get \(\mu\text{mol H}_2/\text{g}\) active material.

- Increased H₂O pressure increases total H₂ produced
- Increased H₂O pressure increases peak rates of H₂ production
- Increased H₂O pressure decreases time for complete re-oxidation.
Temperature Swing vs. Isothermal Water Splitting

P = 760 Torr, [H2O] = 50%

- 1350/1000 °C Isothermal H2
- 1500/1200 °C H2
- 1350 °C Isothermal H2

1450 °C
372 µmoles H2/g active material

174.5 µmol H2/g

372 s
Water Splitting Comparisons

<table>
<thead>
<tr>
<th>Temp Swing (TS) & Isothermal (IT) (Red/Ox); Temperature (°C)</th>
<th>CeO₂ (µmole/g)</th>
<th>Nanostructured “Hercynite” (µmole/g); x 2.13 / g active</th>
<th>CeO₂ Peak Rate (µmole/g/s)</th>
<th>Nanostructured “Hercynite” Peak Rate (µmole/g/s); x 2.13 / g active</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500/1200</td>
<td>159.1 ± 15.7</td>
<td>93.7 ± 19.2</td>
<td>1.28 (avg)</td>
<td>0.32 (avg)</td>
</tr>
<tr>
<td>1350/1000</td>
<td>16.4 ± 3.6</td>
<td>31.4 ± 2.3</td>
<td>0.15 (avg)</td>
<td>0.03 (avg)</td>
</tr>
<tr>
<td>1350/1350</td>
<td></td>
<td>102 ± 18</td>
<td></td>
<td>0.55 ± 0.16</td>
</tr>
<tr>
<td>1450/1450</td>
<td></td>
<td>167.4 (avg)</td>
<td></td>
<td>1.34 (avg)</td>
</tr>
</tbody>
</table>

P = 760 Torr; [H₂O] = 50%

- At high reduction T, TS CeO₂ produces ~ equal H₂ as IT “hercynite cycle” per total g of material (“hercynite cycle” produces about 2X more on active material basis).
- At low reduction T, IT “hercynite cycle” produces ~ 5X more H₂ compared to CeO₂ and ~10X more on basis of active material.
- IT “hercynite cycle” produces substantially more H₂ than TS “hercynite cycle”.
Isothermal Redox Similar to PSA

Insulated, Absorbing Cavity w/ Multi-tubular Fixed Beds

Top-Down View

- Potentially faster redox switching
- Fewer concerns with thermal shock

Pseudo-Side View

900 – 1100 °C

1300 – 1500 °C
3D Monte Carlo ray-tracing model:
• Provides profiles of absorbed solar energy on all surfaces from defined solar profile at aperture

3D transient CFD model:
• Fluid flow through packed bed
• Convective / conductive / radiative heat transfer in packed bed and cavity
• Natural convection in cavity space
• Kinetic reaction rates = f (T, local fluid composition, reaction extent)
• Equilibrium limitations via kinetic rates of reverse reactions

Objectives
• Develop steady state & dynamic models of a multi-tube solar receiver
• Identify parameters controlling receiver efficiency
• Identify optimal tube/cavity configurations & solar flux input
• Quantify impacts of isothermal operation on receiver efficiency
Isothermal redox Efficiency Calculations

Time-averaged receiver efficiency based on transient H₂ production

\[\eta = \frac{\int_{\text{cycle}} \dot{n}_{H_2} LHV_{H_2} \, dt}{\int_{\text{cycle}} P_{\text{solar}} \, dt + \int_{\text{cycle}} E_{O_2} \dot{n}_{O_2} \, dt} = \frac{\text{Heating value of H}_2 \text{ produced}}{\text{Solar energy + Energy to separate O}_2 \text{ from inert}} = \frac{LHV_{H_2} \bar{\eta}_{H_2,i}}{P_{\text{solar}} + E_{O_2} \bar{\eta}_{O_2}} \]

Battery Limits

“Hercynite Cycle”

- 4 kW solar input
- Adiabatic external boundaries
- 6 cm square aperture
- 6 min cycle time
- Flux - Solar beam width / direction optimized independently for each design

<table>
<thead>
<tr>
<th>r cavity (cm)</th>
<th>h cavity (cm)</th>
<th>r tube (cm)</th>
<th>mol CoFe₂O₄ per tube</th>
<th>sccm H₂O per tube</th>
<th>Maximum T (°C)</th>
<th>Average T (°C)</th>
<th>η_{LHV H₂}</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.6</td>
<td>18</td>
<td>2.3</td>
<td>2.6</td>
<td>1</td>
<td>1620</td>
<td>1532</td>
<td>5.5</td>
</tr>
<tr>
<td>20.1</td>
<td>22</td>
<td>3.3</td>
<td>6.3</td>
<td>6</td>
<td>1427</td>
<td>1257</td>
<td>16.7</td>
</tr>
</tbody>
</table>

\(\eta_{LHV H₂} \) increases with a decreased surface/volume ratio for solar reactor
• High-flux Solar Furnace On-sun Operations at NREL

• Laser-assisted Stagnation Flow Reactor Operations at Sandia – Livermore (one Ph.D. student in-place at all times)
Proposed Future Work

- Evaluate isothermal redox at $T > 1450^\circ C$; $P > 760$ Torr; and $[H_2O] = 100$
- Evaluate improved compositions approaching stoichiometric $CoFe_2O_4/Al_2O_3 = 3$
- Develop reaction kinetics rate expressions for “hercynite cycle” active materials
- Incorporate improved reduction and oxidation reaction kinetics into the multi-tubular receiver model; update model
- Demonstrate isothermal redox on-sun
- Evaluate a high-T oxygen transport membrane for O_2 removal during redox cycling (ITM-SEOS)
- Carry out H2A Analysis for Isothermal Redox Processing
Proposed Future Work

- Synthesize Micro-containers of Nano-sized Active Materials & test in a Particle Flow Reactor

- Particle ALD can be used to produce nano-coated nano-particles that are then spray dried/calcined to 60 microns

\[
\text{CoFe}_2\text{O}_4/\text{Al}_2\text{O}_3 = 1/3 \text{ (molar)}
\]

<table>
<thead>
<tr>
<th>dp Al(2)O(3) (nm)</th>
<th>CoFe(2)O(4) Film Thickness (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>1.7</td>
</tr>
<tr>
<td>40</td>
<td>3.3</td>
</tr>
<tr>
<td>150</td>
<td>12.5</td>
</tr>
</tbody>
</table>

Spray Dried

Calcined
(Typical \(d_{50}\) = 60-80 µm)

Or, directly spray dry nano Al\(2\)O\(3\), Fe\(2\)O\(3\) and CoO
Summary

- Zr-doped CeO$_2$ increases H$_2$ productivity by ~ 20% over undoped CeO$_2$;

- Hercynite cycle nanostructured active materials operating isothermally at 1450°C have comparable peak reaction rates and H$_2$ production rates/g compared to Zr-doped CeO$_2$ reduced at 1500°C and oxidized at 1200°C. On the basis of g active materials only, hercynite cycle materials are 2X performance - demonstrated 372 μmoles H$_2$/g active material.

- Hercynite cycle nanostructured active materials operating isothermally at 1350°C have 5X peak reaction rates and H$_2$ production rates/g compared to CeO$_2$ reduced at 1350°C and oxidized at 1000°C. On the basis of g active materials only, hercynite cycle materials are 10X H$_2$ production performance.
• Active “hercynite cycle” nanostructures maintained their redox activity for over 150 cycles, after 1st cycle;

• Increased $[\text{H}_2\text{O}]$, operating P and operating T increase total H_2 produced, increase the peak rate of H_2 production, and decrease the time for complete re-oxidation for isothermal “hercynite cycle” materials; and

• A small adiabatic 4-kW$_\text{thermal}$ solarthermal multi-tube fixed bed reactor operating isothermally with “hercynite cycle” materials is predicted to have a $\eta_{\text{LHV H}_2} > 15\%$.
Acknowledgements:

• 16 Peer-reviewed scientific papers published in 2012;
• 7 already published in 2013 (+ 3 in press)
• 4 U.S. Patents issued in 2012; 1 Issued thus far in 2013
• Three Ph.D. students won 1st, 2nd, and 3rd Place Posters and an U/G student took 1st Place at 2012 Annual AIChE Meeting (Pittsburgh)
SurroundSun™ Multi-tubular Switching Redox Reactor/Receiver

CoFe₂O₄ + 3 Al₂O₃ \rightarrow CoAl₂O₄ + 2Fe₂AlO₄ + 1/2O₂
CoAl₂O₄ + 2Fe₂AlO₄ + H₂O \rightarrow CoFe₂O₄ + 3 Al₂O₃ + H₂

1st Half Cycle

H₂O \rightarrow H₂ + 1/2O₂

University of Colorado
Multi-tube Solar Receiver/Reactor
1350°C/1000°C Redox (P=1120 Torr; 50% [H₂O])

Nanostructured ALD “Hercynite” Materials

Averaged H₂ Production Rate

CoFe₂O₄ + 3 Al₂O₃ + excess Al₂O₃ ➔
145 µmole/g total
309 µmole/g active material
732 µmole/g ferrite
47 % active material

Higher P favors higher productivity (need to validate)

Integrated H₂ production in µmole/g ferrite

Laser-Assisted redox at SNL (2012)

Nanostructured “hercynite cycle” active materials

Fast Reduction Kinetics & Oxygen Exchange

Slow CO₂ oxidation @ 1000°C & 600 Torr

Need to determine impact of higher T & P on oxidation rate

Arifin, D. et al., Energy & Environmental Science 5, 9438-9443 (2012)
Film thickness is uniform throughout the entire sample.

5.2 nm film (1.2 Å/cycle)

HRTEM Alumina Coated Silica (40 nm)

Film thickness is uniform throughout the entire sample of primary particles; coated in a fluidized bed.

5.2 nm film (1.2 Å/cycle)

7 nm Primary TiO$_2$ Particle Nanocoated

Cross-section HRTEM Image of an Al$_2$O$_3$ (15 Å) ALD Coated 7 nm TiO$_2$ Nanoparticle Processed in a Fluidized Bed Reactor