Solar hydrogen production by photoelectrochemical (PEC) water-splitting: Advancing technology through the synergistic activities of the PEC working group (PEC WG)

Prof. Thomas F. Jaramillo

Dept. of Chemical Engineering
Stanford University

May 16, 2013

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
The US DOE PEC Working Group approach towards efficient and durable solar H₂ production
Storing solar energy in the form of chemical bonds

H₂O \rightarrow \text{‘Black Box’ Device/Process} \rightarrow \text{sunlight} \rightarrow \text{H}_2, \text{O}_2
(Photo-)electrochemical schemes

Scheme 1: Separate devices for electricity generation and for H₂ production.

Scheme 2: One integrated device for solar harvesting and H₂ production.
Techno-Economics: PV-electrolysis

- “Electrolysis: Information and Opportunities for Electric Power Utilities”
 DOE-NREL Technical Report, NREL/TP-581-40605
 September 2006

- www.solarbuzz.com (February 20, 2012)

\[\text{1000 kg H}_2/\text{day} \]

\[\text{USA gasoline (2013): } $8.89/\text{kg} \]

\[\text{Industrial Solar: } $17.39/\text{kg} \]

\[\text{Electricity Costs: } $0.166/\text{kWh (2012)} \]

\[\text{500 kW system sunny climate} \]

\[\text{Commercial: } $5.40/\text{kg} \]

\[\text{Industrial: } $4.09/\text{kg} \]

\[\text{Electricity Costs: } $0.069/\text{kWh in 2005} \]

\[\text{Decommissioning, Raw Material and Other Variable Costs: } $0.37/\text{kg} \]

\[\text{Fixed O&M: } $1.30/\text{kg} \]

\[\text{Capital Costs: } $3.68/\text{kg} \]
A world record PEC device

World Record Photoelectrolysis Device

- Direct water electrolysis.
- Unique tandem (PV/PEC) design.
- 12.4% Solar-to-hydrogen

Operated for the U.S. Department of Energy by Midwest Research Institute • Battelle • Bechtel
The big question

Q: Can H₂ production by solar PEC water-splitting ever be cost-effective?

To answer this question, we need a techno-economic analysis!

Four reactor types

Type 1: Single Bed Particle Suspension
STH Efficiency 10%

Type 2: Dual Bed Particle Suspension
STH Efficiency 5%

Type 3: Fixed Panel Array
STH Efficiency 10%

Type 4: Tracking Concentrator Array
STH Efficiency 15%
Which system is the most cost-effective?

Recall that 1 kg of H_2 is the energy equivalent of 1 gallon of gasoline.

Sensitivity Analysis

How does the $/kg H_2$ change if we modify our assumptions on material performance?

Type 1
- **Base Case**: 10%, 1x, 5 years
- **Efficiency**: 15/10/5 %
- **Particle Cost Multiplier**: 0.1/1/20x
- **Lifetime**: 10/5/1 years

Cost Sensitivity (\$ per kg H_2)
- Base Case: $1.63
- Efficiency: $1.49
- Particle Cost Multiplier: $1.61
- Lifetime: $1.61

Type 2
- **Base Case**: 5.0%, 1x, 5 years
- **Efficiency**: 7.5/5.0/2.5 %
- **Particle Cost Multiplier**: 0.1/1/20x
- **Lifetime**: 10/5/1 years

Cost Sensitivity (\$ per kg H_2)
- Base Case: $3.20
- Efficiency: $2.53
- Particle Cost Multiplier: $3.13
- Lifetime: $3.17

Type 3
- **Base Case**: 10%, 153 $/m^2, 10 years
- **Efficiency**: 20/10/5 %
- **PEC Cell Cost**: 80/153/200 $/m^2
- **Lifetime**: 20/10/5 years

Cost Sensitivity (\$ per kg H_2)
- Base Case: $10.36
- Efficiency: $6.14
- PEC Cell Cost: $6.90
- Lifetime: $8.64

Type 4
- **Base Case**: 15%, 316 $/m^2, 10 years
- **Efficiency**: 25/15/10 %
- **PEC Cell Cost**: 200/316/450 $/m^2
- **Lifetime**: 20/10/5 years

Cost Sensitivity (\$ per kg H_2)
- Base Case: $4.05
- Efficiency: $2.85
- PEC Cell Cost: $3.70
- Lifetime: $3.85
Just how feasible are the efficiency assumptions in the techno-economic analysis (STH 10-25%)?
Modeling ‘Realistic’ PEC efficiencies

Device Options

<table>
<thead>
<tr>
<th>Solid-state V_{oc}</th>
<th>Catalyst Activity</th>
<th>Shunt</th>
<th>Absorber Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High V_{oc} (\sim470mV loss)</td>
<td>Precious metal (Pt/Ru)</td>
<td>Zero shunt losses ($R_{sh} = \infty \Omega$)</td>
</tr>
<tr>
<td></td>
<td>Low V_{oc} (\sim590mV loss)</td>
<td>Non-precious metal (MoS$_2$/MnO$_x$)</td>
<td>“Significant” shunt losses ($R_{sh} = 100 \Omega$)</td>
</tr>
</tbody>
</table>

Calculated theoretical limits for a ‘realistic’ STH efficiency as a function of bandgap, taking into account:

- Reaction overpotentials (H_2 and O_2)
- Entropic losses ($V_{ph} < E_g$)
- Shunts

Can reach 10-11 % STH with $E_g \sim 2.3$ eV
Single-absorber devices

Calculated theoretical limits for a ‘realistic’ STH efficiency as a function of bandgap, taking into account:

- **Reaction overpotentials** \((H_2 \text{ and } O_2)\)
- **Entropic losses** \((V_{ph} < E_g)\)
- **Shunts**

![Diagram of a single-absorber device](image)

Multi-junction or Tandem Devices

Calculated theoretical limits for a ‘realistic’ STH efficiency as a function of bandgap, taking into account:

- Reaction overpotentials \((H_2 \text{ and } O_2)\)
- Entropic losses \((V_{ph} < E_g)\)
- Shunts

Can reach ~ 25 % STH with \(E_{g1} \sim 1.2 \text{ eV}\) & \(E_{g2} \sim 1.8 \text{ eV}\)

Calculated theoretical limits for a ‘realistic’ STH efficiency as a function of bandgap, taking into account:

- Reaction overpotentials (H_2 and O_2)
- Entropic losses ($V_{ph} < E_g$)
- Shunts

Can reach 15% STH with $E_{g1} \sim 1.6$ eV & $E_{g2} \sim 1.6$ eV

The US DOE PEC Working Group approach towards efficient and durable solar H₂ production

DOE Targets:
- >1000h @ STH 10-25%
- Projected PEC Cost: $2 - 4/kg H₂
Approach #1 (NREL): Stabilizing High Efficiency Materials & Devices

• High Efficiency
 o Work with single-crystal (high purity) semiconductors composed of Group IIIA and VA p-block elements (III-V)
 o Unrivaled photovoltaic efficiencies

• GaInP₂/GaAs Tandem
 o Only demonstrated system that exceeds unbiased 10% solar-to-hydrogen target
 - 12.4% with Pt-black counter electrode, >16% with RuO₂ CE
 o Metal organic chemical vapor deposition (MOCVD) synthesis
 - Synthesis by NREL’s III-V team

• Focus: Improve Durability
 o High efficiency III-V’s prone to degradation during PEC operation
 o Need enhanced corrosion resistance to meet both efficiency and durability targets

p-GaInP₂/GaAs tandem after 24 hours of operation in 3M H₂SO₄

The MVS/HNEI research team is accelerating the development of three important thin-film material classes with high potential for reaching low-cost H₂ PEC production.

Development of new metal oxides

2.2eV CuWO₄

Chalcogenides bandgap engineering

CuWO₄-CNT nanocomposite

CuₓGa₁₋ₓSe₂

CuInₓGa₁₋ₓS₂

1.6 eV 2.0 eV 2.2 eV 2.4 eV
Approach #3 (Stanford Univ.): 3rd Generation Device Structures, High Surface Area Scaffolds for PEC Materials

Conventional Planar Devices
- Thick hematite layer
- Dense ITO layer
- Glass

Low IQE (long charge trans.)
High loading (high OD)
Low device performance

HSE Support
- Dense ITO layer
- Glass

High IQE (short charge trans.)
Low loading (low OD)
High device performance

Interfacial Engineering
- Ti-Hematite | HSE-ITO
- ALD TMT Tin Oxide
- Post annealed ALD TDMA Tin Oxide
- Spray Tin Oxide
- As-prepared ALD TDMA Tin Oxide

6x improvement in J\text{photo} from SnO\text{2} interfacial layer

Graphs show:
- Photo current onset
- Dark current onset
- Saturated photo current

No SnO\text{2}

6x improvement in J\text{photo} from SnO\text{2} interfacial layer

HSE

Low load

High load
Theory at the molecular-scale (LLNL): Ab-initio molecular dynamics (MD) to investigate the electrode-electrolyte interface

Ab-initio molecular dynamics simulations of water-InP and water-GaP interfaces

Experimental observation: Pt loading on GaP(001) improves the conversion efficiency *only a little* [ChemPhysChem 13, 3053 (2012)]
The US DOE PEC Working Group approach towards efficient and durable solar H₂ production

Summary

• Technologically, PEC water-splitting has already been accomplished.

• A techno-economic analysis shows that it is possible to reach cost targets if materials with appropriate properties can be developed.

• A feasibility study shows that these properties are within reach based on the current state of materials development.

• The PEC WG is collaborating synergistically to accelerate R&D efforts.

DOE Targets:
>1000h @STH 10-25%
Projected PEC Cost:
$2 - 4/kg H₂