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Overview

Timeline
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 Barriers addressed
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How to discover a material with a desired
set of properties?

What would be the crystal structure for
that material?

Is that material stable?

What are electronic and optical
properties of that material?




Introduction to the problem:

The goal is to theoretically/computationally predict
semiconductor photo-catalysts which will satisfy the
following criteria to produce hydrogen by water splitting:

1 — Stable in an aqueous electrolyte

2 — The band gap in the range 1.7eV ~ 2.2V |

3 — Right band edge positions

4 — Efficient optical absorptions properties

5 — Good charge carrier transport



Potential /Y vs. NHE

Introduction to the problem:
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Either band gaps are too large
Or, band edges are not at the right position

Question: How do we get the right materials?



How do we tune band properties?

GaN
1. By isovalent doping. — ATleal.xN
I GaN
2. By passive co-doping. — |1
anGal-le-xOx

3. By predicting novel alloys |EEEEFSTIspsm-

Nanostructures:

4. By reducing the dimensions. Nanocrystal, etc.




*Why not doping (light or heavy)?

AV 4
In doping, the overall crystal structure of the

host materials remains same, but crystallinity
usually deteriorate.

In alloy a new crystal structure emerges, and
stoichiometric relationship may change.



We first consider WO, as our example:
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To improve let us dope WOi with nitrogen:

After N-doping:
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A general feature: Crystalinity is poor after doping.



Mineral database search to design efficient
energy-conversion materials

* There are thousands of naturally occurring minerals
available, which are inherently stable.

 We plan to follow a “natural selection” process
followed by a selective band-engineering approach.

* These new materials will have better crystalline
properties than the doped materials.



Oxides those need to be avoided:

In selecting oxides we have avoided the oxides
which are Mott insulators due to the following
reasons:

 They have very poor transport properties for
both electrons and holes.

* Doping does not improve the conduction
properties significantly.

* Photo-current will be very insignificant.

Journal of Renewable and Sustainable Energy, 3, 053101 (2011).



__ Predicting new alloy:

Modify band structure of WO,, but not by doping.

The first step is to identify what to alloy with WO, :

(We do a lot of reading and testing!)

» In Bi,W,0,, uplift of VB due to hybridization
of O-2p and Bi-6s.

» In Ag,WO,, hybridization of O-2p and Ag-4d was
found favorable for water splitting.




Instead of doping Ag and Bi in WO,,
we search for a mineral structure which
can accommodate all of these in W-oxide.

Need to define proper search descriptors:

Question:

What kind of atomic coordination we are looking for?
What are the charge states?

What symmetries?



What type of bond coordination they prefer:
Bi,W,0,

AgWO,

Goal: Instead of doping, we are looking for a mineral structure
which will have both Ag and Bi in W-oxides, and a stable
multi-cation oxide.



‘Mineral database Search for AgBIW,0Oq:

Possible Structures

L Pobestuaues
sl
_ Denvitves

Derivatives
Monoclinic Orthorhombic
AW0, (S.G.12 C2/m)
Wolframite (S.G. 13 P2/c Bal0,( 8. G. 57 Phem)
Raspite (S.G. 14 P2, /a) Alumotantite (S.G. 60 Phen)

Fergusonite (S.G. 15 12/a)



Computation Details:

* Density functional theory (DFT) has been used to
calculate the total energies and other electronic
properties of the minerals.

* Vienna Ab-initio Simulation Package (VASP) was
used.

e Crystal structure relaxations were performed
without any symmetry constraint.



Scheelite Wolframite Fergusonite
AE=0.69eV AE=0.00eV AE=0.28eV



Wolframite structure with different layer arrangements:
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Figure 5: Partial DOS and band structure
of wolframite AgBiW,0,,.



Second alloy structure




CuBiW,0,

Band structures




Optical Properties of Cu BiWZOS:
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Third alloy structure




—Wp —Wd
—QOp —Sns
—Snp —Snd
—Cud




Summary

Cohesive
Energy Optical Band
(eV/atom) gap (eV)
AgBiW,0, -2.476 2.06
CuBiW,0O,, -2.547 1.48
CuSnW., 0, -3.296 0.96
Cuwo, -2.721 2.26




Collaborators:

e Muhammad N. Huda (Lead Investigator, UTA)
* Pranab Sarker (graduate student, UTA)

* Nicolas Gaillard (HNEI)

e Krishnan Rajeswar (UTA)

 Todd Deutsch (NREL)

 Mowafak M. Al-Jassim (NREL)

e John A. Turner (NREL)




Conclusions:

We have shown that new functional materials can
be designed by predicting new alloy crystal
structures .

In general, multi-cation oxides (more than 2
cations) are very challenging to synthesize.

This new modeling will guide the experimental
scientists by providing “what to look for” to tune
the synthesize process for multi-cation oxides.




Future work:

A robust mineral database search descriptors
based on desired functionality will be developed.

Crystal structure optimizations need to be done
at a higher flexibility.

Collaboration with synthesis groups and feedback
from them will be integrated more closely.

Nano-crystals for selected structures will be
considered.
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