
eere.energy.gov 1  

Solar Hydrogen Production with a 
Metal Oxide Based Thermochemical Cycle 

Anthony McDaniel, Ivan Ermanoski 
Sandia National Laboratories 

Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed 
Martin Company, for the United States Department of Energy’s National Nuclear 
Security Administration under contract DE-AC04-94AL85000. 

This presentation does not contain any proprietary, confidential, or otherwise restricted information 

DOE Annual Merit Review 
16.05.2013  

Project ID: PD081 



eere.energy.gov 2  

Timeline 

Budget 

Barriers Addressed 

Partners 

Overview 

• Project Start Date:  10/2008 
• Project End Date:  10/01/2013* 

• Project Complete:  TBD 

• Total project funding to date. 
DOE share:  $4737K (2008-2013) 
Contractor share: $608K 

• Funding for FY13. 
$435K (SNL) 

• Planned Funding for FY14. 
$500K (SNL) 

• S: High-Temperature Robust 
Materials. 

• T: Coupling Concentrated Solar 
Energy and Thermochemical Cycles. 

• X. Chemical Reactor Development 
and Capital Costs. 

• AC: Solar Receiver and Reactor 
Interface Development. 

• Bucknell University, Lewisburg PA. 
Prof. Nathan Siegel 

• Colorado School of Mines, Golden CO. 
Prof. Jianhua Tong 

• University of Colorado, Boulder CO. 
Prof. Alan Weimer 

*Project continuation and direction determined annually by DOE. 
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•DOE Objective: By 2015, verify the potential for solar thermochemical (STCH) cycles 
for hydrogen production to be competitive in the long term and by 2020, develop 
this technology to produce hydrogen with a projected cost of $3.00/gge at the plant 
gate. 

• Project Objective: Develop a high-temperature solar-thermochemical reactor 
and redox materials for efficient hydrogen production based on a two-step, non-
volatile metal oxide cycle.  

• 2012-2013 Objectives: 
• Design particle receiver-reactor concepts and assess feasibility. 

• Discover and characterize suitable materials for two-step, non-volatile metal 
oxide thermochemical cycles. 

• Construct and test reactor prototypes. 

Relevance 
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Approach 

Milestones and Progress 

ACTIVITY MILESTONE COMPLETE 

Assess hydrogen production cost from a particle 
reactor using the H2A3 tool 

analyzed 100,000 kg H2/day parabolic-dish based 
facility using CeO2, sensitivity analysis reveals reactor 
efficiency is the biggest cost driver 

80% 

Develop design principles for perovskite 
modification.  

formulated three methods based on thermodynamics 
(∆H, ∆S, [     ]) and perovskite structure theory 30% 

Synthesize a small number of candidate redox 
materials. 

sol-gel and solid state reactive sintering used to 
synthesize 45 perovskite and 5 ceria compounds 100% 

Characterize the thermodynamic and kinetic 
performance of new materials. 

new materials screened using TGA protocol, 
conducted detailed kinetic studies on 6 materials 50% 

Discover new redox active perovskites. Sr1-xLaxMn1-yAlyO3 has ∼3× greater redox capacity than 
CeO2 at 150 °C lower Treduction, patent filed 20% 

Theoretically analyze Sandia particle reactor 
performance 

demonstrated that reactor operates near peak solar-to-
H2 efficiency on an annual average, also can produce 
excess electricity AND water from waste heat 

100% 

Design and test particle reactor concepts constructed testing platform, measured >30 g/s 
particle conveyance on recuperating auger prototype, 
found bed permeability is low enough for pressure seal 

60% 

Develop system-level designs and analyses of a 
central-receiver based platform. 

designed novel beam-down optics for 3 MW tower, 
assessed thermal management of secondary reflector 50% 

03.2012-03.2013 Accomplishments  

••
OV
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Approach 

Reactor Efficiency Drives R&D  

• Moving material to sun increases efficiency. 
– Particle transport necessary for continuous 

operation 
• Temperature cycling increases efficiency. 

– Solid-solid heat exchange necessary for 
recuperation 

• Reducing under vacuum increases efficiency. 
– Particle bed necessary for pressure separation 

• High redox capacity material increases efficiency. 
– Bulk materials with low reduction enthalpy 

necessary for deep cycling 

• Incorporating ALL design attributes make it possible to achieve 
DOE ultimate cost target for H2 production. 
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Technical Accomplishments and Progress 

H2A3 Analysis of 100,000 kg H2/day Plant 

• Sandia dish-based particle reactor. 
– CeO2 active material: 

variable solar efficiency 
– 22,155 parabolic dishes over 13 km2 
– 88 m2 per dish 
– Meteorological data for Daggett, CA 
– Centralized delivery at 300 psia H2 

 
• 380 MWTH. 

– Main electrical loads are dish drives, 
H2 pumping, and H2O pumping 
provide by solar 

 
• Analysis conducted in collaboration 

with Strategic Analysis, Inc. 
• Increased reactor efficiency yields significant reduction in H2 costs. 
• Reactor design and materials are critically important. 
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Technical Accomplishments and Progress 

Material Discovery Effort Focused on Perovskites 

• Synthesized 45 compounds from 9 
elements. 

– Al, Cr, Ce, Fe, La, O, Sr, Ti, Zr 
– Sol-gel or Solid State Reactive Sintering 

 
• Identified promising candidates using 

TGA screening. 
 

• Detailed kinetic measurements on 6 
materials in Sandia’s laser-heated 
stagnation flow reactor. 

• More ideal materials increase solar-to-hydrogen efficiency. 

perovskites fall in these regions 

ABO3 
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Technical Accomplishments and Progress 

Discovered Perovskite with Higher Capacity at lower TR than CeO2 

• Perovskite compounds split H2O in a 
thermochemical cycle. 

– First of a kind observation 
• Kinetics benchmarked against CeO2. 

– Similarly fast oxidation rates 

• Make ∼9× more H2 than CeO2 at TR = 
1350 °C. 

• Patent filed on a family of Sr- and Mn- substituted LaAlO3. 
• Likely many other perovskites that can perform even better! 

SLMAn = SrxLa1-xMnyAl1-yO3-δ 
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Technical Accomplishments and Progress 

Perovskite Materials are Durable  

• Conducted 80, 30 minute CO2 splitting cycles. 
• 15 min reduction at 1350 °C, 15 min oxidation at 1000 °C. 

– Heating rate = 6 °C/s 

• No short-term degradation mechanisms visible in perovskite. 

SLMAn = SrxLa1-xMnyAl1-yO3-δ 
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Technical Accomplishments and Progress 

Annual Average Solar Efficiency ≈ Peak Efficiency 

• Solar efficiency weakly dependent 
on DNI in particle reactor. 

– Change particle flow rate to 
maintain design point efficiency 

 

• Annual average efficiency 
nearly equal to design point 
efficiency. 

– Weak DNI dependence 

• Reactor ALWAYS operates near peak efficiency. 
• Compensate for solar variability (400 < DNI < 1000). 

Based on solar resource available in Daggett, CA Recuperator 
efficiency 
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Technical Accomplishments and Progress 

Annual Average Efficiency Dependent on O2 Pressure 

• Pumping speed and recuperator efficiency affect solar efficiency. 
• Increase solar efficiency by lowering O2 pressure and raising 

recuperator efficiency. 

• Pumping speed can compensate for poor heat recuperation. 
• Vice Versa. 

increased 
efficiency at 

lower O2 
pressure 
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Technical Accomplishments and Progress 

Produce H2O and Excess Electricity 

• High quality waste heat can generate electricity and produce water. 
– Use absorption chiller to condense water from the atmosphere 
– Sell excess electricity  

• Year-round operation using only sunshine and air. 
• No need to find or pipe H2O into desert. 

Water condensation: ~ 3 kJ/mol (0.85 kJ/mol theoretical) 
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Technical Accomplishments and Progress 

Prototype Validates Conveyance and Pressure Separation 

• Conveying rate far exceeds 
particle flow requirement. 

– Tested prototype auger designed 
for heat recuperation 

– Narrow fined, double helix 

• Bed permeability sufficient for 
sealing. 

– Pressure separation key to high 
efficiency 

• No technical show stoppers! 
• A clear path to high temperature prototype development. 
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Technical Accomplishments and Progress 

Particle Reactor Requires Beam Down Optics 

• 3 MWTH, 75 m tower height, 6606 heliostats (1 m2 mirror). 

– Reactor located near tower reflector 
– 1,600 kW/m2 on 2 m aperture, peak flux > 6,000 kW/m2 

– Terminal concentrator not needed 
• Flat tower reflector must tolerate high solar flux ~ 140 kW/m2 (140 suns). 
 

Conventional Beam Down Tower Modified Beam Down Tower 

• Basis for a central receiver H2A3 analysis. 
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FY13 Collaborations 

• Prof. Nathan Siegel at Bucknell University. 
– Solar interface, systems and economic analysis 

 
• Prof. Jianhua Tong at the Colorado School of Mines. 

– Perovskite synthesis and TGA screening 
 

• Prof. Alan Weimer at the University of Colorado. 
– Students in residence at SNL/CA characterizing Sandia 

materials 
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Proposed Future Work 

• Estimated FY14 funding target. 
– Continue perovskite research and development. Use lessons learned from early 

success to propose and validate composition—activity relationships. Investigate 
ABO3 formulations from earth-abundant elements (rock-forming elements). 

– Modify engineering test stand for high-temperature operation (< 5 kWTH operating 
off-sun). Evaluate designs for solid-solid heat exchange, oxidation chamber, particle 
conveyance, gas flow, durability, etc. Investigate tradeoffs between recuperation, 
pumping, and material activity. Validate and refine reactor model. 

– Complete H2A3 analysis for our centralized receiver design. Include sensitivity 
studies to resolve critical paths for reducing H2 production costs. 

– Evaluate optical components for the beam-down design using Bucknell University’s 
Solar Simulator. 

 
• Funds in modest excess of FY14 estimate. 

– Upgrade stagnation flow reactor to operate at higher pressure (1-2 atm) and higher 
throughput. Minimize material characterization bottleneck. 

– Initiate computational material screening effort using DFT methods. 
– Build balance of plant infrastructure for engineering test stand to interface with 

Sandia’s solar furnace (on-sun testing). 
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Summary 

• Analyzed H2 production costs for a parabolic-dish based particle reactor. 
– 100,000 kg H2/day, DOE’s ultimate cost targets are achievable 
– Sensitivity analysis reveals the importance of reactor efficiency 

• Discovered Sr1-xLaxMn1-yAlyO3 perovskite that outperforms CeO2. 
– Developed methodology for perovskite modification and material discovery 
– Synthesized and screened 45 compounds 
– Perovskite produces 9× more H2 than CeO2 at 150 

 
C lower reduction temperature 

• Analyzed efficiency of Sandia particle reactor under various operating conditions. 
– Reactor ALWAYS operates at near peak solar-to-hydrogen efficiency 
– Reactor produces high quality waste heat to make excess electricity and provide water 

• Validated particle conveyance and pressure separation in cold prototype. 
– Exceeded required particle flow rates (> 30 g/s) 
– Particle bed gas permeability sufficiently small to ensure vacuum-tight seal 

• Designed beam-down optical system for particle reactor operating at 3 MWTH.  
– Novel design for flat tower reflector 
– Heat management of tower reflector can be accomplished through air cooling 

• FY13 Accomplishments represent significant progress towards 
overcoming technical barriers to STCH development. 
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Technical Backup 

Technical Back-Up Slides 
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Approach 
 Experimental Methods for Characterizing Redox Materials 

• Surface analysis. 
– Surface Raman, XPS 

• Material properties. 
– BET surface area 
– SEM-EDX, TEM-EELS, XRD 

• Kinetic measurements. 
– Stagnation flow reactor 

• 500 W CW NIR laser heating 
• Modulated beam mass spectrometer 

• Screen for O2 uptake and release. 
– Assess redox viability 

• Resolve thermal reduction behavior. 
• Resolve water splitting behavior. 

– Variable T, P, [H2O] 
• Analysis. 

– Resolve rate limiting mechanisms 
– Develop kinetic models 
– Evaluate material stability 
– Test cycle performance 

• Assess material behavior at heating rates > 10°C/s. 
• Expose material to many rapid heating cycles. 
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• High solar utilization under most operating conditions. 
− 25% solar-to-H2 annual average efficiency expected 

• Use low DNI in the morning for system warm-up. 

Technical Accomplishments and Progress 

Sandia Reactor Also Operates Efficiently at Low DNI 

Low DNI High 
efficiency 

Increased 
heat recovery 

& 
Decreased pO2 
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Prototype Platform Construction and Testing 
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