

Solar Hydrogen Production with a Metal Oxide Based Thermochemical Cycle

Anthony McDaniel, Ivan Ermanoski

Sandia National Laboratories

DOE Annual Merit Review 16.05.2013

Project ID: PD081

Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Timeline

- Project Start Date: 10/2008
- Project End Date: 10/01/2013*
- Project Complete: TBD

Budget

- Total project funding to date.
 DOE share: \$4737K (2008-2013)
 Contractor share: \$608K
- Funding for FY13.
 \$435K (SNL)
- Planned Funding for FY14.
 \$500K (SNL)

Barriers Addressed

- S: High-Temperature Robust Materials.
- T: Coupling Concentrated Solar Energy and Thermochemical Cycles.

U.S. DEPARTMENT OF

- X. Chemical Reactor Development and Capital Costs.
- AC: Solar Receiver and Reactor Interface Development.

Partners

- Bucknell University, Lewisburg PA.
 Prof. Nathan Siegel
- Colorado School of Mines, Golden CO.
 Prof. Jianhua Tong
- University of Colorado, Boulder CO.
 Prof. Alan Weimer

*Project continuation and direction determined annually by DOE.

Relevance

•<u>DOE Objective</u>: By 2015, verify the potential for solar thermochemical (STCH) cycles for hydrogen production to be competitive in the long term and by 2020, develop this technology to produce hydrogen with a projected cost of \$3.00/gge at the plant gate.

• <u>Project Objective</u>: Develop a high-temperature solar-thermochemical reactor and redox materials for *efficient* hydrogen production based on a two-step, nonvolatile metal oxide cycle.

• 2012-2013 Objectives:

- Design particle receiver-reactor concepts and assess feasibility.
- Discover and characterize suitable materials for two-step, non-volatile metal oxide thermochemical cycles.
- Construct and test reactor prototypes.

Approach

Energy Efficiency & Renewable Energy

Technical Efforts Target Three Key Areas

- Systems analysis.
 - Refine estimates for H₂ production cost
- Materials discovery and characterization.
 - Target perovskite oxides exclusively

property	ceria (CeO ₂)	perovskite (ABO ₃)	ideal
redox kinetics	FAST	TBD	FAST
redox capacity	LOW	HIGH	HIGH
reduction T _H	HIGH	LOW	LOW
durability	HIGH	TBD	HIGH
earth abundance	LOW/MED	HIGH	HIGH

- Assess 3 critical material functions:

O₂ uptake-and-release

onset temperature for thermal reduction oxidation kinetics

- Reactor design and development.
 - Particle reactor with novel beam-down optics
 - Reactor design and material are critically linked

Reactor efficiency is the biggest cost driver.

Two-step metal oxide cycle

Milestones and Progress

03.2012-03.2013 Accomplishments

ACTIVITY	MILESTONE	COMPLETE
Assess hydrogen production cost from a particle reactor using the H2A3 tool	analyzed 100,000 kg H_2 /day parabolic-dish based facility using CeO ₂ , sensitivity analysis reveals reactor efficiency is the biggest cost driver	80%
Develop design principles for perovskite modification.	formulated three methods based on thermodynamics (Δ H, Δ S, [$V_o^{\bullet\bullet}$]) and perovskite structure theory	30%
Synthesize a small number of candidate redox materials.	sol-gel and solid state reactive sintering used to synthesize 45 perovskite and 5 ceria compounds	100%
Characterize the thermodynamic and kinetic performance of new materials.	new materials screened using TGA protocol, conducted detailed kinetic studies on 6 materials	50%
Discover new redox active perovskites.	$Sr_{1-x}La_xMn_{1-y}Al_yO_3$ has ~3× greater redox capacity than CeO_2 at 150 °C lower $T_{reduction}$, patent filed	20%
Theoretically analyze Sandia particle reactor performance	demonstrated that reactor operates near peak solar-to- H_2 efficiency on an annual average, also can produce excess electricity AND water from waste heat	100%
Design and test particle reactor concepts	constructed testing platform, measured >30 g/s particle conveyance on recuperating auger prototype, found bed permeability is low enough for pressure seal	60%
Develop system-level designs and analyses of a central-receiver based platform.	designed novel beam-down optics for 3 MW tower, assessed thermal management of secondary reflector	50%

Energy Efficiency & Renewable Energy

Reactor Efficiency Drives R&D

- Moving material to sun increases efficiency.
 - Particle transport necessary for continuous operation
- Temperature cycling increases efficiency.
 - Solid-solid heat exchange necessary for recuperation
- Reducing under vacuum increases efficiency.
 - Particle bed necessary for pressure separation
- High redox capacity material increases efficiency.
 - Bulk materials with low reduction enthalpy necessary for deep cycling

U.S. DEPARTMENT OF

ENERG

 Incorporating ALL design attributes make it possible to achieve DOE ultimate cost target for H₂ production.

Energy Efficiency & **Technical Accomplishments and Progress** Renewable Energy H2A3 Analysis of 100,000 kg H₂/day Plant

Sandia dish-based particle reactor.

- CeO₂ active material: variable solar efficiency
- 22,155 parabolic dishes over 13 km²
- 88 m² per dish
- Meteorological data for Daggett, CA
- Centralized delivery at 300 psia H₂
- 380 MW_{тн}.
 - Main electrical loads are dish drives, H₂ pumping, and H₂O pumping provide by solar
- Analysis conducted in collaboration with Strategic Analysis, Inc.
 - Increased reactor efficiency yields significant reduction in H₂ costs.
 - Reactor design and materials are critically important.

Energy Efficiency & **Technical Accomplishments and Progress** ENERG Renewable Energy **Material Discovery Effort Focused on Perovskites**

ABO₃

- Synthesized 45 compounds from 9 elements.
 - Al, Cr, Ce, Fe, La, O, Sr, Ti, Zr
 - Sol-gel or Solid State Reactive Sintering
- Identified promising candidates using TGA screening.
- Detailed kinetic measurements on 6 materials in Sandia's laser-heated stagnation flow reactor.

10 Abundance, atoms of element per $1 ^{\circ}$ atoms of Si Rock-forming elements 10

perovskites fall in these regions

property	ceria (CeO ₂)	perovskite (ABO ₃)	ideal
redox kinetics	FAST	TBD	FAST
redox capacity	LOW	HIGH	HIGH
reduction T _H	HIGH	LOW	LOW
durability	HIGH	TBD	HIGH
earth abundance	LOW/MED	HIGH	HIGH

More ideal materials increase solar-to-hydrogen efficiency.

Technical Accomplishments and Progress

Energy Efficiency & Renewable Energy

Design Principles for Perovskite Modification

- Method 1: reduction enthalpy and entropy.
 - Taken from published data
- Method 2: oxygen non-stoichiometry.
 - Taken from published data
- Method 3: perovskite structure theory.
 - Goldschmidt tolerance factor ionic radii (r_A , r_B , r_O)
 - Redox active B-site transition metal
 - Heterosize A-site substitution ($r_{A'} \neq r_A$)
 - Heterovalent A-site substitution $(n'_{A'} \neq n_A)$

$$\left[A_{1-x}^{n+} A_{x}^{\prime n'+} \right) \left(B_{1-y}^{m+} B_{y}^{\prime m'+} \right) O_{3-\delta}$$

 $(r_A + r_0)/\sqrt{2}(r_B + r_0) \sim 1$

Large oxygen non-stoichiometry (ABO_{3- δ}, 0.5 $\geq \delta \geq$ 0.1) = high capacity. High oxygen mobility = fast kinetics.

Technical Accomplishments and Progress

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Discovered Perovskite with Lower Reduction Enthalpy than CeO₂

Onset of O₂ evolution 300 °C lower than CeO₂.

- Perovskite oxygen yield 8 × > CeO₂ at T_R = 1350 °C.
- $\delta_{\text{PEROVSKITE}} >> \delta_{\text{CERIA}}$
- Lower reduction temperature and larger non-stoichiometry (δ) increase solar-to-hydrogen efficiency.

Energy Efficiency & Renewable Energy

Discovered Perovskite with Higher Capacity at lower T_R than CeO₂

- Perovskite compounds split H₂O in a thermochemical cycle.
 - First of a kind observation
- Kinetics benchmarked against CeO₂.
 - Similarly fast oxidation rates
- Make $\sim 9 \times$ more H₂ than CeO₂ at T_R = 1350 °C.

compound	H_2 (µmole/g)
SLMA1	307
SLMA2	277
SLMA3	220
CeO _{2-δ}	32

$$SLMAn = Sr_{x}La_{1-x}Mn_{y}Al_{1-y}O_{3-\delta}$$

- Patent filed on a family of Sr- and Mn- substituted LaAlO₃.
- Likely many other perovskites that can perform even better!

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Perovskite Materials are Durable

cycle number

- Conducted 80, 30 minute CO₂ splitting cycles.
- 15 min reduction at 1350 °C, 15 min oxidation at 1000 °C.
 - Heating rate = $6 \circ C/s$
 - No short-term degradation mechanisms visible in perovskite.

 $P_{TH} = r_{12} * r_d * t_W * A * P_S - P_{rad}$

 $Q = Q_{TR} + Q_{SH} + Q_{AUX}$

new materials impact Q and P_{TH}

Theoretical Analysis of Sandia Reactor Concept: Solar-to-H₂ Efficiency

$$\eta = \left(\frac{P_{TH}}{P_S}\right) \left(\frac{HHV_{H_2}}{Q}\right) = \frac{\dot{n}_{H_2}HHV_{H_2}}{P_S} \rightarrow \dot{n}_{H_2}$$

All-inclusive efficiency metric:

- Collection losses.
 - Concentrator and re-radiation
- Oxide heating.
- Oxide thermal reduction.
- Feedstock heating (steam).
- Pumping.
- Electrical/mechanical work.

- Solar Efficiency = Solar-to-H₂ conversion efficiency based on HHV.
- Model is used to explore optimal reactor operating conditions.
- Model is used to assess performance gains from new materials.

, Energy Efficiency & Renewable Energy

Annual Average Solar Efficiency ≈ Peak Efficiency

- Solar efficiency weakly dependent on DNI in particle reactor.
 - Change particle flow rate to maintain design point efficiency

35% Lines: Design-point efficiency 0 32.2% Symbols: Annual average efficiency 30% 29.5% Cutoff: 250 W/m² DNI; 30 MPH wind 27.2% Solar Efficiency 25% 25.3% 23.2% 20.6% 20% 0 18.3% 16.4% 15% 0 14.8% 0 13.4% 0 12.2% 10.7% 10% 40 20 60 80 100 Nominal Recuperator Efficiency [%]

ENERG

- Annual average efficiency nearly equal to design point efficiency.
 - Weak DNI dependence
- Reactor ALWAYS operates near peak efficiency.
- Compensate for solar variability (400 < DNI < 1000).

Technical Accomplishments and Progress

Annual Average Efficiency Dependent on O₂ Pressure

- Pumping speed and recuperator efficiency affect solar efficiency.
- Increase solar efficiency by lowering O₂ pressure and raising recuperator efficiency.
 - Pumping speed can compensate for poor heat recuperation.
 - Vice Versa.

Energy Efficiency & Renewable Energy

Produce H₂O and Excess Electricity

Water condensation: ~ 3 kJ/mol (0.85 kJ/mol theoretical)

- High quality waste heat can generate electricity and produce water.
 - Use absorption chiller to condense water from the atmosphere
 - Sell excess electricity
 - Year-round operation using only sunshine and air.
 - No need to find or pipe H₂O into desert.

Technical Accomplishments and Progress

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Prototype Validates Conveyance and Pressure Separation

- Conveying rate far exceeds particle flow requirement.
 - Tested prototype auger designed for heat recuperation
 - Narrow fined, double helix

Sandia Iational

aboratories

- Bed permeability sufficient for sealing.
 - Pressure separation key to high efficiency

- No technical show stoppers!
- A clear path to high temperature prototype development.

Technical Accomplishments and Progress ENERGY Energy Efficiency & Renewable Energy Particle Reactor Requires Beam Down Optics

Conventional Beam Down Tower

RFI

Modified Beam Down Tower

RFI

- 3 MW_{TH}, 75 m tower height, 6606 heliostats (1 m² mirror).
 - Reactor located near tower reflector
 - 1,600 kW/m² on 2 m aperture, peak flux > 6,000 kW/m²
 - Terminal concentrator not needed
- Flat tower reflector must tolerate high solar flux ~ 140 kW/m² (140 suns).

RFO

Basis for a central receiver H2A3 analysis.

RFO

Technical Accomplishments and Progress

Energy Efficiency & Renewable Energy

Assess Thermal Management of Reflector

- Evaluating forced air convection for thermal management.
- Back surface mirror provides durability needed for outdoor operation.
 - 5-10% of incident solar energy absorbed by the mirror
- Max allowable mirror temperature between 100-160 °C.

Cooling secondary mirror not an issue.

Renewable Energy

- Prof. Nathan Siegel at Bucknell University.
 - Solar interface, systems and economic analysis
- Prof. Jianhua Tong at the Colorado School of Mines.
 - Perovskite synthesis and TGA screening
- Prof. Alan Weimer at the University of Colorado.
 - Students in residence at SNL/CA characterizing Sandia materials

• Estimated FY14 funding target.

- Continue perovskite research and development. Use lessons learned from early success to propose and validate composition—activity relationships. Investigate ABO₃ formulations from earth-abundant elements (rock-forming elements).
- Modify engineering test stand for high-temperature operation (< 5 kW_{TH} operating off-sun). Evaluate designs for solid-solid heat exchange, oxidation chamber, particle conveyance, gas flow, durability, etc. Investigate tradeoffs between recuperation, pumping, and material activity. Validate and refine reactor model.
- Complete H2A3 analysis for our centralized receiver design. Include sensitivity studies to resolve critical paths for reducing H₂ production costs.
- Evaluate optical components for the beam-down design using Bucknell University's Solar Simulator.
- Funds in modest excess of FY14 estimate.
 - Upgrade stagnation flow reactor to operate at higher pressure (1-2 atm) and higher throughput. Minimize material characterization bottleneck.
 - Initiate computational material screening effort using DFT methods.
 - Build balance of plant infrastructure for engineering test stand to interface with Sandia's solar furnace (on-sun testing).

Summary

- Analyzed H₂ production costs for a parabolic-dish based particle reactor.
 - 100,000 kg H₂/day, DOE's ultimate cost targets are achievable
 - Sensitivity analysis reveals the importance of reactor efficiency
- Discovered Sr_{1-x}La_xMn_{1-y}Al_yO₃ perovskite that outperforms CeO₂.
 - Developed methodology for perovskite modification and material discovery
 - Synthesized and screened 45 compounds
 - Perovskite produces $9 \times$ more H₂ than CeO₂ at 150 C lower reduction temperature
- Analyzed efficiency of Sandia particle reactor under various operating conditions.
 - Reactor ALWAYS operates at near peak solar-to-hydrogen efficiency
 - Reactor produces high quality waste heat to make excess electricity and provide water
- Validated particle conveyance and pressure separation in cold prototype.
 - Exceeded required particle flow rates (> 30 g/s)
 - Particle bed gas permeability sufficiently small to ensure vacuum-tight seal
- Designed beam-down optical system for particle reactor operating at 3 MW_{TH}.
 - Novel design for flat tower reflector
 - Heat management of tower reflector can be accomplished through air cooling

FY13 Accomplishments represent significant progress towards overcoming technical barriers to STCH development.

Technical Back-Up Slides

Technical Backup

Energy Efficiency & Renewable Energy

ENERGY

System Level: Many Losses and High Annual Efficiency

Resource efficiency = 95% for Daggett, CA (DNI > 300W/m²)

Operational ~ 94%

Equip. Availability = 97%, Blocking&Shading = 98%, Wind Outage = 99%

Optical ~ 79% Reflectivity = 93% (two reflections) Dirt = 95% Window = 95% Tracking = 99% Intercept = 95%

Receiver ~ 82% Radiation = 82% Conduction/Convection = 0 %

~25% solar to H₂ annual average

eere.energy.gov

Approach

Experimental Methods for Characterizing Redox Materials

- Surface analysis.
 - Surface Raman, XPS
- Material properties.
 - BET surface area
 - SEM-EDX, TEM-EELS, XRD
- Kinetic measurements.
 - Stagnation flow reactor
 - 500 W CW NIR laser heating
 - Modulated beam mass spectrometer
- Screen for O₂ uptake and release.
 - Assess redox viability
- Resolve thermal reduction behavior.
- Resolve water splitting behavior.
 - Variable T, P, [H₂O]
- Analysis.
 - Resolve rate limiting mechanisms
 - Develop kinetic models
 - Evaluate material stability
 - Test cycle performance

U.S. DEPARTMENT OF

ENERG

Energy Efficiency &

Renewable Energy

- Assess material behavior at heating rates > 10°C/s.
- Expose material to many rapid heating cycles.

Technical Accomplishments and Progress

Energy Efficiency & Renewable Energy

Discovered Perovskite Formulated without Rare-Earth Elements

 Perovskite oxygen non-stoichiometry comparable to CeO₂ @ T_R = 1350 °C.

- Perovskite splits H₂O.
- Produce ~5× less H₂ at lower T_R (1350 °C vs. 1500 °C).
- Ca(Ti_xFe_{1-x})O₃ comprised of earth-abundant rock-forming elements.
- Discovery of cheap materials avoids rare-earth market volatility issues.

Technical Accomplishments and Progress

morning

(warm-up)

3997 Time of year [h]

San

Nationa

Laboratories

evening

U.S. DEPARTMENT OF ENERGY

Energy Efficiency & Renewable Energy

Sandia Reactor Also Operates Efficiently at Low DNI

- 25% solar-to-H₂ annual average efficiency expected
- Use low DNI in the morning for system warm-up. •

Prototype Platform Construction and Testing

