Advancement of Systems Designs and Key Engineering Technologies for Materials Based Hydrogen Storage

United Technologies Research Center

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

Timeline
- Start: February 2009
- End Phase 1: March 2011
- End Phase 2: June 2013
- End Phase 3 / Project: June 2014
- Percent complete: 83% (spending)

Budget
- $5.91M Total Program
 - Reflects budget reduction with $0.95M
 - $4.58M DOE
 - $1.33M (22.5%) UTRC
- FY09: $600k DOE
- FY10: $1,000k DOE
- FY11: $750k DOE
- FY12: $750k DOE
- FY13: $775k DOE

Barriers*
- A – J
- A. System Weight & Volume
- D. Durability/Operability
- J. Thermal Management

Targets*
- All

Partners
- Pacific Northwest National Laboratory
- SRNL
- Los Alamos National Laboratory
- LINCOLN COMPOSITES
- HRI
- GM
- Ford
- OSU
- JPL
- NREL

* DOE EERE HFCIT Program Multi-year Plan for Storage

IEA HIA Task 32
Objectives

- Design of materials-based vehicular hydrogen storage systems that will allow for a driving range of greater than 300 miles.

<table>
<thead>
<tr>
<th>Performance Measure</th>
<th>Units</th>
<th>2010</th>
<th>2017</th>
<th>Ultimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Gravimetric Capacity</td>
<td>g H₂ /kg system</td>
<td>45</td>
<td>55</td>
<td>75</td>
</tr>
<tr>
<td>System Volumetric Capacity</td>
<td>g H₂ /L system</td>
<td>28</td>
<td>40</td>
<td>70</td>
</tr>
<tr>
<td>System fill time (for 5 kg H₂)</td>
<td>minutes</td>
<td>4.2</td>
<td>3.3</td>
<td>2.5</td>
</tr>
<tr>
<td>Fuel Purity</td>
<td>% H₂</td>
<td></td>
<td></td>
<td>SAE J2719 guideline (99.97% dry basis)</td>
</tr>
</tbody>
</table>

Major project impact:
- Gas/Liquid separation (GLS) of liquid chemical hydride
- H₂ quality (NH₃ adsorbent, particulate filter)
- Integrated Power Plant Storage System Modeling:
 - UTRC oversees modeling framework on consistent platform, supports storage system model integration and develops GUI
- Risk Assessment: MOF-5 test plan and AB flammability
Phase 2 S*M*A*R*T Milestones and Status

<table>
<thead>
<tr>
<th>Partner</th>
<th>SMART Milestone</th>
<th>Status</th>
</tr>
</thead>
</table>
| UTRC | Demonstrate less than 100 ppm liquid carry-over with gas/liquid separator with weight less than 5.4 kg and volume less than 19 liters. | Carry-over: 800±200 ppm (70°C, 12 bar)
Mass 5.8 kg
Volume 2.7 L |
| UTRC | NH₃ filter capable of 1800 miles fuel cell grade H₂ with a maximum mass of 1.2 kg and a maximum volume of 1.6 liters. | Demonstrated: 0.1 ppm NH₃
Mass 1.1 kg
Volume 1.6 L |
Approach

- **Gas liquid separator (GLS):**
 - Selected and scaled down a GLS through collaboration with vendor
 - Demonstrated the engineering concept through testing with surrogate materials
 - Developed GLS model and UTRC is performing model validation tests

- **H₂ quality:**
 - Collected experience data from partners about particulate mitigation in flow through cryo-adsorbent systems
 - Developed NH₃ filter and provided filters for testing at LANL in combination with other impurities (competitive adsorption with borazine)
 - Developed NH₃ sorbent filter model and validated model

- **Simulink® Framework:**
 - Developed graphical user interface (GUI) architecture and performed beta-test
 - Compared H₂ storage systems on a common basis, including all BOP (PNNL)

- **Risk assessment:**
 - Performed flammability tests of AB slurries at UTRC
 - Developed detailed test plan for MOF-5 risk assessment at Ford/BASF

Use results to estimate material property requirement for DOE’s 2017 system level targets.
Collaborations

| United Technologies Research Center | • MOF-5 risk assessment
• Particulate mitigation |
|-------------------------------------|--------------------------|
| GM | • Process development
• BOP components
• Testing of GLS with surrogate material
• IRH-33 as support in NH₃ sorption filter
• NH₃ filter performance tests
• Risk assessment: AB flammability |
| Pacific Northwest National Laboratory | • Comparison of H₂ storage systems on a common basis
• Integration of storage system models in framework
• Graphical user interface development for Simulink® framework and beta-test with ORNL and SNL |
| Los Alamos National Laboratory | |
Demonstrate Engineering Concepts

- Hydrogen gas must be separated from the liquid spent fuel and purified on-board following the exothermic thermolysis of ammonia borane.
Gas Liquid Separation for Chemical Hydrides

- GLS design features:
 - Demister pad
 - Static vane pack induces a swirl
 - Vortex finder
 - Surrogate spent fuel reservoir with drain and level control

- Droplet transport model developed in order to improve GLS design

Validate model with droplet size distribution measurement in outlet
Gas Liquid Separator (GLS) Test Facility at UTRC

- Constructed gas-liquid separator test facility
- Completed test facility shake down:
 - N_2 as surrogate for H_2
 - Silicone oil and polyimide (slurry) as surrogate for liquid chemical hydride (silicone oil tested as of March 2013)
 - Mahr pump (Low weight and volume) limits pressure to 200 psig (13.8 bar)
- Demonstrated S*M*A*R*T milestone target with silicone oil
GLS Results

- Tested performance of custom-designed gas-liquid separator under the agreed upon S*M*A*R*T milestone conditions:
 - …… 720 mL/min liquid phase and 600 L/min of H₂ @ STP (40 wt% AB @ 2.35 Eq H₂ and max H₂ flow of 0.8 g/s H₂) … less than 100 ppm aerosol…..

- Partial design of experiment with factors:
 - Gas flow rate
 - Oil flow rate
 - Temperature (highlighted)
 - Pressure
 - Particulate matter weight fraction in slurry

- Carryover:
 - Droplets vs. vapor condensation:
 - Low vapor pressure is an important fluid chemical hydride material property

<table>
<thead>
<tr>
<th>Temperature [°C]</th>
<th>Carryover in mass ppm</th>
<th>Average ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>70</td>
<td>603</td>
<td>724</td>
</tr>
<tr>
<td>170</td>
<td>7808</td>
<td>7189</td>
</tr>
</tbody>
</table>
GLS Model Development

- Developed axisymmetric Fluent model with droplet tracking in support of gas-liquid separator optimization:

 ![Diagram of GLS Model](image)

 - Gas: 600 slpm, Liquid: 0.72 slpm at 170°C
 - Knowledge gap: Droplet size distribution at GLS inlet

- Determined need for coalescence filter to remove small droplets

![Graphs showing droplet size distribution at 35 bar and 6 bar](image)

S*M*A*R*T:
- Gas: 600 slpm
- Liquid: 0.72 slpm at 170°C
Technical Accomplishments (Cont.)

- Obtained operating experience with GLS system
- Developed capability to determine droplet size distribution at outlet of gas-liquid separator for model validation:
- Developed capability to design gas-liquid separator for Phase 3
- Identified drain and level control system as opportunities for integration with gas-liquid separator in order to reduce weight and volume
- Recommended further integration between thermolysis reactor and gas-liquid separator
Ammonia Filter
(On-board impurity mitigation)

- Optimize MnCl₂ loading on super-activated carbon IRH-33 (UQTR) for dynamic adsorption of NH₃
- Develop and validate dynamic breakthrough adsorption model
- Size filter for 1800 miles
- Provide NH₃ filters of competitive adsorption test with ammonia + borazine mixtures to LANL

- Apply learning from evaluating particulate filters for cryo-adsorption system (<10 µm, <1 µg/L)
NH₃ Sorbent Filter Results

- Demonstrated S*M*A*R*T milestone of NH₃ filter:
 - Ammonia scrubber with a minimum replacement interval of 1800 miles… outlet concentration of 0.1 ppm (inlet concentration = 500 ppm) …..< 1.2 kg and < 1.6 liter…..

- Characterized NH₃ adsorption isotherm (-20, 0, 20, 50, 77°C)

- Optimized capacity and demonstrated sorbent regeneration
Dynamic NH₃ Sorption Capacity

- Demonstrated substantial ammonia capacity improvement (6x) over commercially available sorbents.

![Dynamic sorption capacity graph](chart.png)

- Developed and validated dynamic adsorption breakthrough model.

![NH₃ outlet/INlet vs Time graph](chart.png)

- Demonstrate that ammonia can be adsorbed to produce fuel-cell grade hydrogen.

Ammonia Filter with 50 wt% MnCl₂ on IRH-33 meets weight and volume targets of HSECoE.
Minimizing NH₃ filter and H₂ gas cooler weight

<table>
<thead>
<tr>
<th>Radiator outlet temperature or Inlet temperature of adsorbent bed (°C)</th>
<th>Heat exchanger weight (kg)</th>
<th>Dynamic NH₃ sorption capacity (wt%)</th>
<th>NH₃ filter weight (kg)</th>
<th>Total weight (filter + Heat exchanger) (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>0.965</td>
<td>11.25</td>
<td>1.1</td>
<td>2.07</td>
</tr>
<tr>
<td>50</td>
<td>0.577</td>
<td>9.31</td>
<td>1.3</td>
<td>1.88</td>
</tr>
<tr>
<td>80</td>
<td>0.385</td>
<td>8.71</td>
<td>1.5</td>
<td>1.86</td>
</tr>
</tbody>
</table>

Slight advantage of warm gas (80 °C) cleanup*.

(* Borazine filter components not yet included)
Technical Accomplishments and Progress

Framework with Graphical User Interface (GUI)

- Metal hydride storage system model example in Simulink® framework

Hydrogen Vehicle Simulation Framework

Select storage system

- Metal hydride model (ORNL and SNL)

Inputs

- Zoomable plots
- Save results and generate Matlab® plots

Results (at end of simulation)

- H2 delivered: kg
- H2 used: kg
- Geometric capacity: %
- Volumetric capacity: g/L
- Temperature: °C
- Pressure: bar
- Fuel economy: mpg
- Range: miles
- Distance traveled: miles

Stop simulation

In beta test with ORNL and SNL.
Risk Assessment
(Comparison of solid AB versus liquid AB in terms of flammability)

Technical Accomplishments and Progress

AB thermolysis in open air (inside ventilated hood)
- Peak temperature during AB thermolysis in Air: \(196.1^\circ C\)
- Self-ignition of gases evolved from AB thermolysis in Air: \(89.7^\circ C\)
- Initial temperature: \(18.9^\circ C\)

AB thermolysis in enclosed air (8.3 liters spherical test vessel)
- Temperature peaked at: \(~273^\circ C\)
- Initial temperature: \(150^\circ C\)

Slurry AB has similar ignition properties as solid AB.

10 wt. % AB Slurry
- Peak temperature rise: \(213^\circ C\)
- Thermolysis off gases self-ignited at \(121^\circ C\)
- \(H_2\) ignition ignited the silicone oil

AB slurry heating time [minutes]

AB powder heating time [minutes]

Peak temperature during AB thermolysis in Air: \(196.1^\circ C\)

Spark ignition initiated at \(~140^\circ C\)

Heating rate \(~1.6^\circ C/min\)
Particulates
(SAE J2719 April 2008 Hydrogen Quality Guideline for FCV)

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>ppm</th>
<th>Particulate size</th>
<th>Particulates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>5</td>
<td><10µm</td>
<td><1µg/L</td>
</tr>
<tr>
<td>Total hydrocarbons</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C1 basis)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxygen</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helium</td>
<td>300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inert gases (N2, Ar)</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon dioxide</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon monoxide</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfur compounds</td>
<td>0.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formic acid</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammonia</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total halogenates</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total gases *</td>
<td>300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogen fuel index</td>
<td>>99.97</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* The value of total gases is the summation of the values of impurities listed in this table.

- Porous stainless steel filters tested with MOF-5 and Maxsorb

- Initial results show that MOF-5 particulate concentration is below SAE guideline but there are measurement system limitations.

- Engine Exhaust Particle Sizer™ Spectrometer

- Need to collect data at higher flow rates to simulate flow-through cooling.
FY12 and FY13 Plan
(Contingent on Phase 2 to Phase 3 transition and budget)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>FY13 1Q</th>
<th>FY13 2Q</th>
<th>FY13 3Q</th>
<th>FY13 4Q</th>
<th>FY14 1Q</th>
<th>FY14 2Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Management</td>
<td>Go/No-Go meeting Phase 2 to Phase 3 transition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>F2F-meetings; Tech Team Review; Annual Merit Review</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Quarterly Financial and Technical Reports</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical Hydride Operability</td>
<td>Validate gas-liquid separator model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Optimize gas-liquid separator internals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Use tools to design gas-liquid separator for Phase 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Determine integration opportunities of gas-liquid separator with other components</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2 Quality</td>
<td>Fabricate filter material for Phase 3 at sub-scale prototype level.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fabricate filter housing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Demonstrate H2 Quality targets in Phase 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mitigate any Phase 3 operability issues</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPPSSM</td>
<td>Lead IPPSSM Technical Area (TA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Support Model Integration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maintain Vehicle/Storage System Framework</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Update models with Phase 3 sub-scale prototype findings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Provide input and support sub-scale prototype testing in Phase 3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk Assessment</td>
<td>Assess risks of chemical hydride system</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assess risks of adsorbent system</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary

Relevance: Design of materials based vehicular hydrogen storage systems that will allow for a driving range of greater than 300 miles.

Approach: Leverage in-house expertise in various engineering disciplines and prior experience with metal hydride system prototyping to advance materials based H$_2$ storage for automotive applications.

Technical Accomplishments and Progress:

- Demonstrated Gas/Liquid Separator (GLS) S*M*A*R*T milestone with surrogate material.
- Determined operating characteristics of GLS system.
- Developed GLS model as design tool.
- Demonstrated regenerable NH$_3$ filter S*M*A*R*T milestone by minimizing weight and volume for 1800 miles regeneration interval.
- Developed and validated NH$_3$ filter dynamic sorption model.
- IPPSSM: Developed graphical user interface (GUI) and performed beta test. Supported integration of H$_2$ storage models into framework.
- Determined that slurry AB has similar ignition properties as solid AB.
- Collaborated with BASF/Ford on risk assessment of MOF-5.
- Tested performance of SS particulate filters with MOF-5 and MaxSorb.
Acknowledgements

This material is based upon work supported by the U.S. Department of Energy under Contract No. DE-FC36-09GO19006.

The authors would like to thank all members of the HSECoE for stimulating discussions, Richard Chahine for providing IRH-33 and Jesse Adams, Bob Bowman and Ned Stetson for their outstanding support.

Disclaimer: This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government of any agency thereof.
Questions and suggestions?
Technical Back-Up Slides
Publications and presentations

- José Miguel Pasini, Claudio Corgnale, Bart A. van Hassel, Theodore Motyka, Sudarshan Kumar, and Kevin L. Simmons, “Metal hydride material requirements for automotive hydrogen storage systems,” accepted by *Int. J. Hydrogen Energy*.

Impurities introduced by liquid media

- Product name: Silicone oil AP 100
- Viscosity: ~100 mPa.s at 25°C

Dow Corning 710 Fluid

Temperature control required to prevent degradation, e.g. <260°C
Weight and Volume of Full Scale Ammonia Filter

1800 miles/ exchange, 60 miles/kg H₂, NH₃ concentration 500 ppm

Ammonia Filter with 50 wt% MnCl₂ on IRH-33 meets weight and volume targets of HSECoE
Pressure Drop and Size

1800 miles/ exchange, 60 miles/kg \(\text{H}_2 \), NH\(_3\) concentration 500 ppm
Absolute Pressure of hydrogen gas - 5 bar

Darcy's Law:
\[
\Delta P = \frac{Q \mu L}{KA}
\]

\(K = 2.4 \times 10^{-10} - 2.8 \times 10^{-10} \text{ m}^2 \)
(Estimated from experiments)

Porosity = 30%
Average particle diameter = 800 \(\mu \text{m} \)

Ammonia Filter with 50 wt\% MnCl\(_2\) on IRH-33 shows the lowest pressure drop and the smallest column length.
Past Status

- **Beginning of Phase 2 (03/31/2011):**
 - Transitioned from solid AB to AB in a fluid form (liquid or slurry).
 - NH$_3$ sorbent with 5 wt% dynamic sorption capacity.

- **Last Tech Team Review (02/15/2012):**
 - Designed a gas-liquid separator test facility.
 - Selected custom designed static gas-liquid separator (GLS).
 - Reported high dynamic sorption capacity NH$_3$ sorbent (11 wt%).

Flexible screw auger
GLS system operating characteristics

S*M*A*R*T Milestone Conditions:

- Silicone Oil AR 20 Flow = 720 ml/min
- N2 Flow = 600 slpm
- Mixing Temperature = 70°C
- System Pressure ~ 180 psig (12 Bar)
- Separation Efficiency = (99.92±0.02)% n=3

Technical Accomplishments and Progress