Development of Improved Composite Pressure Vessels for Hydrogen Storage

Norman L. Newhouse, Ph.D., P.E.
Hexagon Lincoln
14 May 2013

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

Timeline

• Start 1 Feb 2009
• End 30 Jun 2014
• 65% complete

Budget

• Project funding $17,781,251
 • DOE Share $1,425,000
 • Cost Share $356,251
• FY12 = $215,000
• FY13 = $200,000

Barriers

• Barriers addressed
 – A. System Weight and Volume
 – B. System Cost
 – G. Materials of Construction

• Targets (2017)
 – Gravimetric capacity > 5.5%
 – Volumetric capacity > 0.040 kg H₂/L
 – Storage system cost - TBD

Partners

• HSECoE
 SRNL, PNNL, LANL, JPL, NREL, UTRC, GM, Ford, HL, Oregon State Univ, UQTR, Univ of Michigan, Caltech, BASF

• Project lead = Don Anton, SRNL
Objectives - Relevance

- Meet DOE 2010 and 2017 Hydrogen Storage Goals for the storage system by identifying appropriate materials and design approaches for the composite container
 - Gravimetric capacity: 2010 > 4.5%, 2017 > 5.5%
 - Volumetric capacity: 2010 > 0.028 kg H₂/L, 2017 > 0.040 kg H₂/L
 - Storage system cost: TBD

- Maintain durability, operability, and safety characteristics that already meet DOE guidelines for 2010 and 2017

- Work with HSECoE Partners to identify pressure vessel characteristics and opportunities for performance improvement, in support of system options selected by HSECoE Partners

- Develop high pressure tanks as required to:
 - Contain components and materials of the selected hydrogen storage system
 - Operate safely and effectively in the defined pressure and temperature range
Approach

- **Establish and document baseline** design, materials, and manufacturing process
- **Evaluate potential improvements** for design, material, and process to achieve cylinder performance improvements for weight, volume, and cost
- **Down select** most promising engineering concepts as applicable to HSECoE selected systems
- **Evaluate** design concepts and ability to meet Go/No-Go requirements for moving forward
- **Document progress** in periodic reports and support HSECoE Partner meetings and teleconferences
Approach/Results

• Phase 1
 – Material evaluation for cost and weight reduction, internal volume increase
 • Projected cylinder improvements: 11% lower weight, 4% greater internal volume, 10% lower cost
 – Evaluate design and materials against operating requirements of storage systems selected by HSECoE Partners
 • Baseline design approach established
 • Liner material development is most significant issue
 • Maintain durability, operability, and safety

• Phase 2
 – Confirm operating conditions
 – Update baseline design and materials
 – Evaluate alternate designs
 – Evaluate alternate materials
 – Develop bench-top test vessel(s)
Progress – Phase 2 Test Vessel Criteria

- **Consensus input from HSECoE Partners:**

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Test Vessel 1</th>
<th>Test Vessel 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Pressure</td>
<td>200 bar</td>
<td>100 bar</td>
</tr>
<tr>
<td>Maximum operating pressure</td>
<td>250 bar</td>
<td>125 bar</td>
</tr>
<tr>
<td>Minimum operating pressure</td>
<td>Vacuum, < 1e-5 torr</td>
<td>(same)</td>
</tr>
<tr>
<td>Internal liquid volume (dimensional priority)</td>
<td>~6 Liters</td>
<td>~2 Liters</td>
</tr>
<tr>
<td>Liner ID</td>
<td>16.6 cm (6.54 inches)</td>
<td>11.2 cm (4.41 inches)</td>
</tr>
<tr>
<td>Vessel OD/OAL</td>
<td>~2:1 aspect ratio</td>
<td>(same)</td>
</tr>
<tr>
<td>Temperature range</td>
<td>20ºK to 373ºK</td>
<td>80ºK to 373ºK</td>
</tr>
<tr>
<td>Vessel Type</td>
<td>Type 4</td>
<td>Type 1</td>
</tr>
</tbody>
</table>
Prior Results - Test vessel 1, Materials Testing

- **Baseline dimensions**
 - OD (Tank) = 183 mm (7.18 inches)
 - OAL = 372 mm (14.64 inches)
 - Volume = 5.68 liters

- **Baseline construction**
 - Fiber = T700
 - Resin = epoxy
 - Liner = HDPE
 - Bosses = 6061 Aluminum

- **Existing vessel design tested (360 x 1680 mm)**
 - Baseline materials (T700, Epoxy, HDPE)
 - Temperatures (min achieved) from 77°C (composite) to 108°C (liner)
 - Initial pressure 68 bar (1000 psi) at RT, ~ 34 bar at low temperature (stabilizes liner)
 - Two cylinders - two cycles each
 - No effect on room temperature burst properties.
 - 9253 psi & 9077 psi
 - Configuration nominal is 8978 psi, min required 8021 psi
Prior results - Liner material investigation

- Tensile Impacts of
 - HDPE (baseline)
 - Modified EVOH
 - HDPE with nano-additives
 - PA
 - PTFE

- Energy of impact provides relative values only
- Of materials tested, HDPE has best cold/cryo properties (tested to 144ºK)
Progress - Subscale Type 4 Cryo Testing

- Cryogenic testing has been conducted on subscale Type 4 tanks
 - Tank 1 leaked at 4129 psi
 - 62 bar (900 psi) hold
 - 13.8 bar/sec (200 psi/sec) pressurization
 - Tank 2 leaked at 3340 psi
 - 138 bar (2000 psi) hold
 - 13.8 bar/min (200 psi/min) pressurization
 - Pressure level greater than 2.25 x 60 bar
 - Leaking was from liner crack(s)
 - Crack appears to initiate at boss/liner interface
 - Region of high stress due to differential CTE
 - Laminate held up well
 - Considering method to re-seal liner and retest
Progress – Test vessel 2

• Type 1 subscale vessel
• Three piece aluminum construction
 – Allows ease of assembly and replacement of components
 – Cryo service compatibility
 – Higher weight, but lower cost (~30% to 50% lower than type 4)
• Available for use by HSECoE partners in Phase 2
 – Ambient burst test to confirm safety
Progress – Test Vessel 2 Design

- OAL = 10.867 inches
- Collar OD = 6.165 inches
- Cylinder OD = 4.848 inches
- Wall thickness = 0.220 inches
- Ports = 1-1/8 – 12
- Volume = 2 liters
- Service pressure = 100 bar
- Design safety factor = 2.25 (min)
- Burst pressure = 370 bar (actual)
Progress - Subscale Type 1 Cryo Testing

• Type 1 subscale tank cycled 200 times to service pressure at 80K
 – Pressure cycling with liquid nitrogen
 – No thermal cycling, not expected to be an issue
• Burst pressure was 460 bar (6675 psi)
 – Burst pressure was 370 bar for ambient test
 – Strength of 6061-T6 increases with decreasing temperature
 – Similar failure mode, ambient vs. cryo
• Confirms safety in cryo use
Progress - Full Scale Design Evaluations

- SMART milestones for report on full scale designs:
 - Evaluate Type 1 and Type 4 tanks
 - Designs compared on following slides
 - Design for 40°K to 160°K
 - Low temperature is not a problem for aluminum alloy Type 1
 - Liner issues for Type 4 with extreme temp (80K), need further development
 - Qualification tests passed at 219K (-54C)
 - Some testing successful between 80K and 219K
 - No issue expected for carbon fiber
 - Meet ASME pressure vessel code
 - ASME Code could be met when pressure was >210 bar, but overly conservative for 100 bar use
 - DOT/NHTSA has jurisdiction, FMVSS regulations would be met
 - Design for 60 bar service pressure
 - 60 bar and 100 bar service pressure considered in designs
 - Mass less than 10 kg and volume less than 120 L
 - Volume will depend on adsorbent efficiency
 - 60 L and 120 L designs compared
 - Weight could be met for 120 L design with Type 4 tank if optimized liner could be developed
Progress - Full Scale Design Comparisons

<table>
<thead>
<tr>
<th>Tank</th>
<th>Mat'l</th>
<th>P (bar)</th>
<th>FS</th>
<th>Dia (mm)</th>
<th>L (mm)</th>
<th>Vol (liter)</th>
<th>Wt (kg)</th>
<th>PV/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>60</td>
<td>2.25</td>
<td>440</td>
<td>950</td>
<td>120</td>
<td>11.35</td>
<td>634</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>60</td>
<td>2.25</td>
<td>390</td>
<td>640</td>
<td>60</td>
<td>5.73</td>
<td>628</td>
</tr>
<tr>
<td>3</td>
<td>G</td>
<td>60</td>
<td>3.5</td>
<td>400</td>
<td>660</td>
<td>60</td>
<td>15.36</td>
<td>234</td>
</tr>
<tr>
<td>4</td>
<td>G</td>
<td>100</td>
<td>3.5</td>
<td>410</td>
<td>660</td>
<td>60</td>
<td>26.16</td>
<td>229</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>100</td>
<td>2.25</td>
<td>390</td>
<td>640</td>
<td>60</td>
<td>8.16</td>
<td>735</td>
</tr>
<tr>
<td>6</td>
<td>Al</td>
<td>60</td>
<td>2.25</td>
<td>390</td>
<td>640</td>
<td>60</td>
<td>16.36</td>
<td>220</td>
</tr>
<tr>
<td>7</td>
<td>Al</td>
<td>60</td>
<td>2.25</td>
<td>440</td>
<td>950</td>
<td>120</td>
<td>30.00</td>
<td>240</td>
</tr>
</tbody>
</table>

- Carbon tanks have highest performance (PV/W)
- Glass and aluminum tanks are similar performance
- Larger tanks will have slightly better performance
- Aluminum tank can be improved by choice of alloy and better control of strength
Progress - Optimizing

- Performance improvement by reducing Factor of Safety (FS) to 2.0
 - Stress rupture is still acceptable
 - Vacuum shell will provide additional damage tolerance

<table>
<thead>
<tr>
<th>Tank</th>
<th>Mat’l</th>
<th>P (bar)</th>
<th>FS</th>
<th>Dia (mm)</th>
<th>L (mm)</th>
<th>Vol (liter)</th>
<th>Wt (kg)</th>
<th>PV/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>60</td>
<td>2.25</td>
<td>440</td>
<td>950</td>
<td>120</td>
<td>11.35</td>
<td>634</td>
</tr>
<tr>
<td>1A</td>
<td>C</td>
<td>60</td>
<td>2.0</td>
<td>434</td>
<td>950</td>
<td>120</td>
<td>10.58</td>
<td>681</td>
</tr>
</tbody>
</table>

- Performance improvement by using thinner liner, e.g. resin layer
 - Reduces cost and weight, increases volume
 - Permeation is reduced due to low temperature
 - Must avoid leakage and microcracking

<table>
<thead>
<tr>
<th>Tank</th>
<th>Mat’l</th>
<th>P (bar)</th>
<th>FS</th>
<th>Dia (mm)</th>
<th>L (mm)</th>
<th>Vol (liter)</th>
<th>Wt (kg)</th>
<th>PV/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>60</td>
<td>2.25</td>
<td>440</td>
<td>950</td>
<td>120</td>
<td>11.35</td>
<td>634</td>
</tr>
<tr>
<td>1A</td>
<td>C</td>
<td>60</td>
<td>2.25</td>
<td>434</td>
<td>950</td>
<td>120</td>
<td>8.61</td>
<td>836</td>
</tr>
</tbody>
</table>
Accomplishments

• Phase 1 improvements could be incorporated into Phases 2 & 3
 – 11% lower weight, 4% greater volume, 10% lower cost
• Phase 2 test vessels have been designed, manufactured, and tested
 – Team consensus on vessel requirements
 – Analysis and burst testing confirms design and safety
 – Allows team members to demonstrate internal components
• Cryogenic cycle and burst testing of Type 1 test tank to confirm suitability for Phase 2 and 3 system testing
• Patent being pursued for external vacuum insulating vessel, Hexagon Lincoln and PNNL inventors
Collaborations

• Monthly teleconferences with PNNL and team on pressure vessels and containment
• Monthly teleconferences with adsorbant team
• Monthly HSECoE Coordinating Council telecons
• Face to Face Meetings with HSECoE Team
 – May 14, 2012, Washington, DC
 – Oct 9-11, 2012, Mystic, CT
• Tech Team Review Meeting
 – March 20-21, 2012, Southfield, MI
Future Work - Planned Tasks

- **Design separable Type 1 tank as Phase 3 baseline**
 - Reduces program risk, allows reassembly
 - Identify internal mounting features

- **Design monolithic Type 1 tank**
 - Identify how to install components – larger boss opening vs. weldment
 - Type 1 tank lower cost than Type 4
 - Alternate baseline if assembly issues addressed

- **Develop Type 4 cryogenic liner**
 - Opportunity for significantly lighter weight
 - Confirm cryogenic strength of carbon fiber
 - Confirm ability of liner to handle 80C operating condition

- **Demonstrate Type 3 cryogenic tank**

- **Demonstrate External vacuum shell**
 - With PNNL
Summary

- Type 1 and Type 4 lab subscale tanks designed, fabricated and provided to HSECoE partners
- Type 1 subscale tank successfully burst tested at ambient and cryo temperatures
- Type 4 subscale tank successfully burst tested at ambient temperature, but leaked at cryo temperature
- Designs evaluated to achieve SMART milestones, opportunities for improvement identified
- Phase III planned tasks identified