

Fuel Cell Electric Vehicle Evaluation

2013 DOE Annual Merit Review and Peer Evaluation Meeting

Jennifer Kurtz, Keith Wipke, Sam Sprik, Chris Ainscough, Genevieve Saur

Project ID# TV001

May 16, 2013: Washington, DC

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Overview

Timeline	Barriers
Project start date: October 2012	Lack of current controlled and on-
Project end date: September 2013*	road hydrogen fuel cell vehicle
Percent complete: On-going	data
Budget Total project funding DOE share: \$485k Contractor share: \$0 Funding received in FY13: \$485k	Partners Several fuel cell vehicle OEMs (data providers)

*Project continuation and direction determined annually by DOE

Project Objectives, Relevance, and Targets Fuel Cell Electric Vehicle Evaluation

Objectives

- Validate H₂ FC vehicles in real-world setting
- Identify current status and evolution of the technology

• Relevance

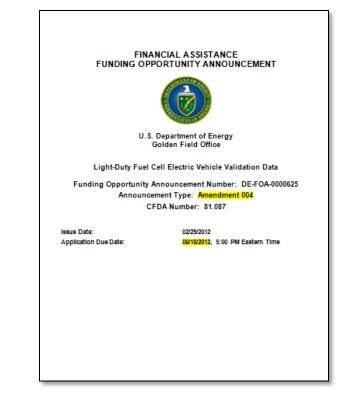
- Objectively assess progress toward targets and market needs
- Provide feedback to H₂ research and development
- Publish results for key stakeholder use and investment decisions

Key Targets							
Performance Measure	Status*	Ultimate (2020)					
Fuel Cell Stack Durability	2,500 hours	5,000 hours					
Vehicle Range	254+ miles	300+ miles					
Fill Rate	0.77 kg/min	1.0 kg/min					
Efficiency	59% at 25% Power	60% at 25% Power					

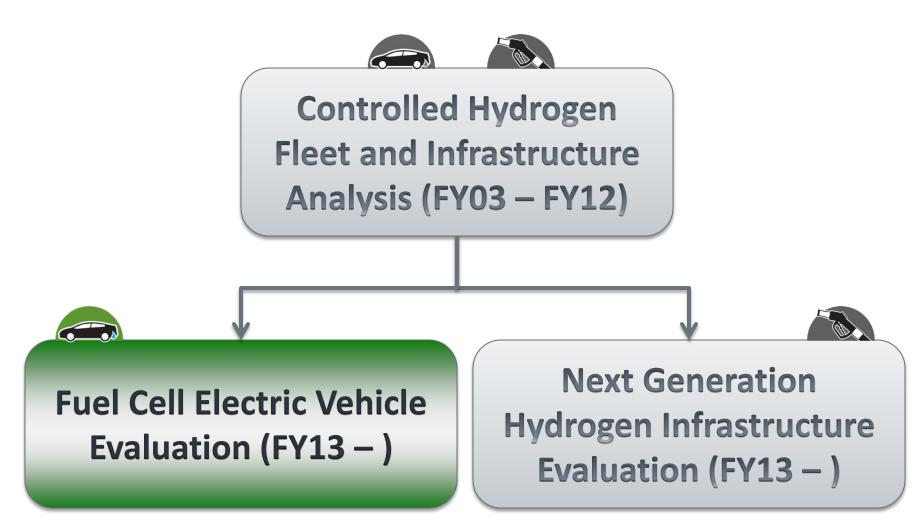
*As reported in previous Learning Demonstration results

APC/Shell Pipeline station, Torrance, CA. Photo: NREL

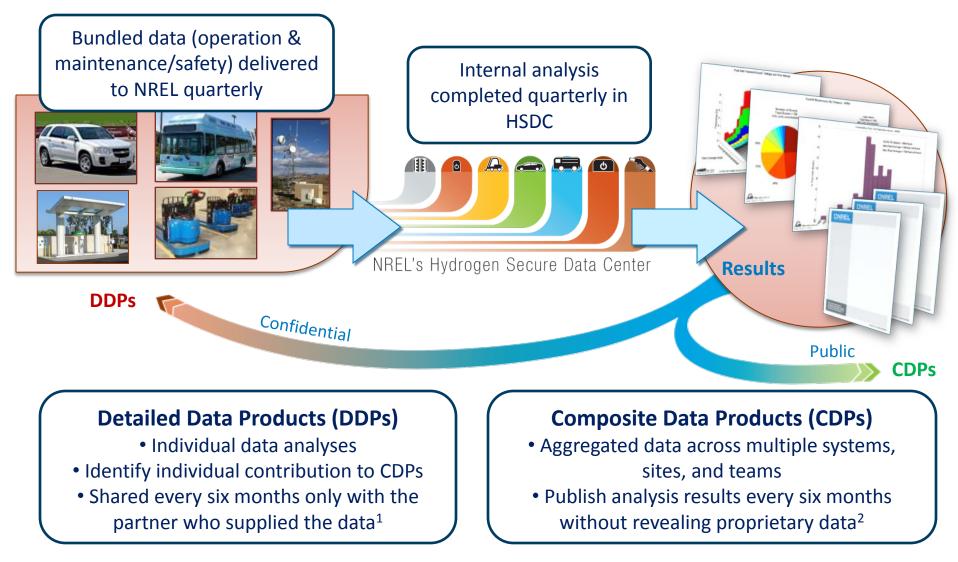
Objective: FOA-625 Status (FCEV Data)


Proposals were submitted June 18

Objectives of FOA


- Provide FCEV vehicle data to NREL's HSDC for analysis and aggregation
- Seek to validate improved performance and longer durability from comprehensive set of early FCEVS, including first production vehicles
- 5-year project duration; 2 phases

"...to collect and submit dynamometer and real-world vehicle performance data to a DOE-sponsored third-party collection and analysis provider to provide statistically valid projections on key metrics including durability of fuel cell system"


• DOE negotiations in progress with OEM teams

Approach: Leverage Learning Demonstration Activity

Approach: Analysis and Reporting of Real-World Operation Data

- 1) Data exchange may happen more frequently based on data, analysis, and collaboration
- 2) Results published via NREL technology validation website, conferences, and reports (<u>http://www.nrel.gov/hydrogen/proj_learning_demo.html</u>)

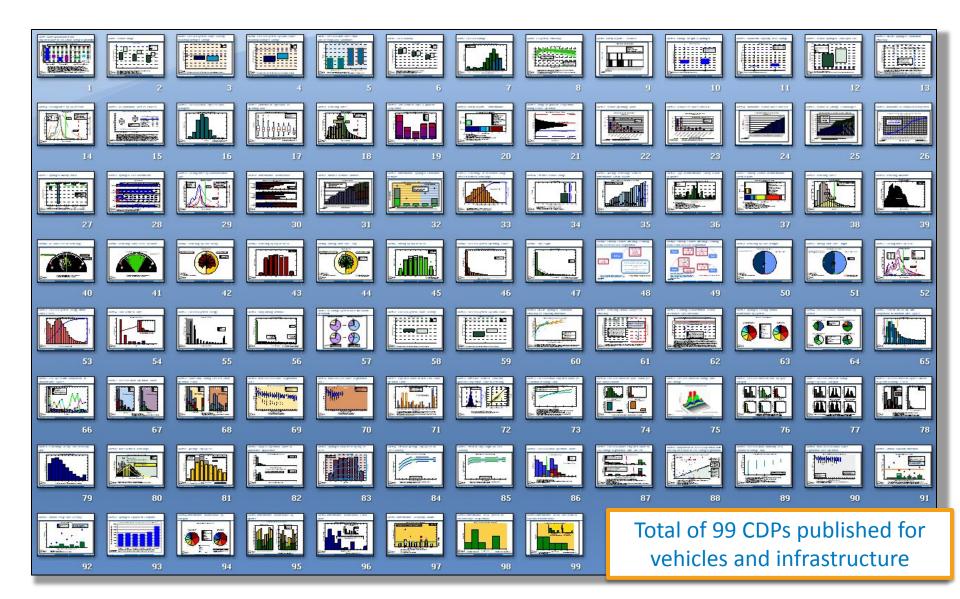
Approach: Analysis

• NREL Fleet Analysis Toolkit (NRELFAT)

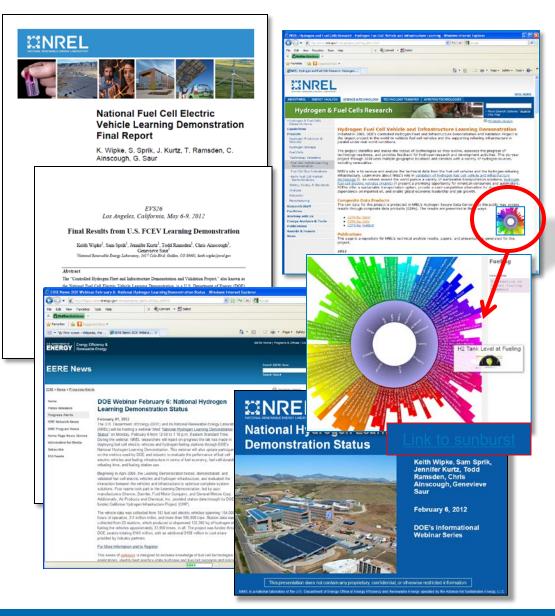
- Developed first under fuel cell vehicle
 Learning Demonstration
- Expanded to include material handling, backup power, and stationary power
- Restructured architecture and interface to effectively handle new applications and projects and for flexible analysis

Publish results

- Detailed and composite results
- Target key stakeholders such as fuel cell and hydrogen developers and end users


Approach and Accomplishments: Milestones

- 1. Finalize data collection and analysis plans through communications with DOE and industry partners
- 2. Move HSDC to Energy Systems Integration Facility
- 3. Quarterly analysis of operation and maintenance data for fuel cell systems and hydrogen infrastructure
- 4. Hi-annual technical composite data products
- 5. Site visits and project kick-offs


New 5 year project planned

Approach: CDPs Published from Learning Demonstration available for benchmarking current FCEV performance

Approach: Communicate Results to Broad Audience

- Presentations
- Webinars
- Interactive way to access CDP results from website

Approach: Tracking Future Progress Against Previous Demonstration Results

Vehicle Performance Metrics	Gen 1 Vehicle	Gen 2 Vehicle	2009 Target	After 2009Q4	
Fuel Cell Stack Durability			2,000 hours		
Max Team Projected Hours to 10% Voltage Degradation	1,807 hours	<u>2,521</u> hours			
Average Fuel Cell Durability Projection	821 hours	1,062 hours		1,748 hours	
Max Hours of Operation by a Single FC Stack to Date	2,375 hours	1,261 hours		1,582 hours	
Driving Range			250 miles		
Adjusted Dyno (Window Sticker) Range	103-190 miles	196- <u>254</u> miles			
Median On-Road Distance Between Fuelings	56 miles	81 miles		98 miles	
Fuel Economy (Window Sticker)	42 – 57 mi/kg	43 – 58 mi/kg	no target		
Fuel Cell Efficiency at ¼ Power	51% – 58%	53% – <u>59</u> %	60%		
Fuel Cell Efficiency at Full Power	30% – 54%	42% – <u>53</u> %	50%		

Infrastructure Performance Me	2009 Target	After 2009Q4		
H ₂ Cost at Station (early mark	eet) On-Site Natural Gas Reformation \$7.70 – \$10.30/kg	Gas ReformationElectrolysis\$7.70 -\$10.00 -		
Average H ₂ Fueling	Rate 0.77 l	kg/min	1.0 kg/min	0.65 kg/min

Outside of this project, DOE independent panels concluded at 500 replicate stations/year: Distributed natural gas reformation at 1,500 kg/day: **\$2.75-\$3.50/kg** (2006) Distributed electrolysis at 1,500kg/day: **\$4.90-\$5.70** (2009)

panel

Accomplishment: Data Templates and Security Procedure Updated

On-Road Vehicle Data^{1,2}

Data does not need to be provided via Excel spreadsheet, provided the information below is clearly identified in the data file and formatted the same for each report. Template updated: January 5, 2012 (INREL)

On-Board Venicle and Ken	Tenny Data
	Start TimeStamp
Vehicle Number	unique vehicle
Data files submitted need to contain the a time stamp (down to the second) for t	

a time stamp (down to the second) for the start of each set of di (example: Veh12_20111015_155905.csv) Data will be converted to Matlab ".mat files ter: 10 Data will be delivered to NREL's Hvdroæn Secure Data Center (HSDC) and will be protected as commercially valuable data in accordance with HSDC security procedure (2) Data must be colleded at a minimum frequency of Hz. (3) Values must be calculated rabert hand inderdty measured.

(4) Fueling information is needed to gather fueling rates, fueling times, fueling amounts and temperature changes during fueling even

Component	N/A	Vehic	le	N/A		Fuel Tank ⁴				Fuel Cell Stac	k		Energy Storage			Traction Motor (I
Measurement	Time ²	Vehicle Speed	Odometer	Ambient Temperature	Pressure	Temperature	Tank Level	Voltage	Current Out	Stack Hours	State	H2 mass flowrate	Voltage	Current	State of Charge	Voltage
Units	Seconds (at least 1 data point per second)	Miles/hour	Miles	degrees C	psig	deg C	×	Volts	Amperes	Hours	Example: 0=Off, 1=On, 2=Standby, 3=Start, 4=Shutdown	g/s	Volts	Amperes (Positive = current in, Negative = current out)	% SOC	Volts

Vehicles

Data should include all vehicles since inception of the program
Template undated: January 5, 2012 (NREL)

Date data	updated:	insert da	ite updated]					
Autom	aker		of automaker						
Date updated	Unique Vehicle Identifier	Configuration (1,2, from separate template)	Starting Date of Vehicle Operation	Odometer at start of DOE program	Vehicle Operation (if no longer in service)	Primary Location of Operation	Primary Refueling Location(s)	Still in Operation	
mm/dd/yyyy		configurationx	mm/dd/yyyy	mile	mm/dd/yyyy	City, State		(Y,N)	
11/18/11	V24	configuration1	10/30/04	550	NA	Sacramento, CA	RS-08	Y	FC Stack overha Summary
11/18/11	V23	configuration2	12/1/04	20	N/A	Detroit, MI	RS-14	Y	First vehicle to o
		First 2 rows are for exampl only and should be over- written with real data.							
			-						
		Vehicles	Stacks N	Maintenance	Safety	On-Road F	uel Economy	+	

Vehicle operation, maintenance, safety, and specification templates were all updated based on previous templates, discussions with stakeholders, and validation topic priorities.

	icle Descriptive Para		Company	Company1				
		configuration	Unique Vehicle Configurations					
Templa	te updated: January 5, 2012 (NREL)							
	Parameter	Units	Configuration1	Configuration2	Configuration3			
	Date of Input	yyyy/mm/dd						
	Configuration ID Vehicle							
	Venicle Year							
	Tear	YYYY						
	Make			_				
	Technology Generation							
	Frontal Area							
	Coefficient of Drag	m		-				
	Coefficient of Drag Curb Weight	kg		-				
	Fuel Economy (EPA rating)	niles/kg		-				
-	Fuel Economy (EPA rating) Range	miles/kg miles						
	Usable Hydrogen Storage	kg						
	Top Speed	miles/hour						
	Acceleration (0-60 mph)	s						
-	Fuel Cell System	,						
	Manufacturer							
	Model							
	System Net Power Rating	kW						
	Fuel Cell Stack Max Power	kW						
	Open Circuit Voltage	v						
1	Idle Current Load	Amp						
	Max Operating Current	Amp						
	Current Density @ Rated Power	Amp/cm ²						
	Fuel Cell System Mass	kg						
	Fuel Cell System Volume	ĩ						
	Balance of Plant Mass	kg						
	Balance of Plant Volume	ĩ						
	Fuel Cell Stack Mass	kg						
	Fuel Cell Stack Volume	ĩ						
	Number of Cells in Stack							
	Calculated Specific Power	W/kg	#DIV/01	#DIV/01	#DIV/01			
	Calculated Power Density	W/L	#DIV/01	#DIV/01	#DIV/01			
	Fuel Cell System Efficiency (LI-	V based)						
	Gross System Power at Idle	kW						
	Efficiency at 5% net power	%						
	Efficiency at 10% net power	%						
	Efficiency at 25% net power	%						
	Efficiency at 50% net power	%						
	Efficiency at 75% net power	%						
	Efficiency at 100% net power	%						
	Hydrogen Storage							
	Number of Tanks							
	Tank Type							
	Cycle Life	cycles						
	Tank Pressure	bar						
	Total H2 Mass	kg						
	Total H2 Volume							

Hydrogen Secure Data Center <u>at</u>

Energy Systems Integration Facility

Procedures to Protect Proprietary Technical Data Submitted to the NREL Hydrogen Secure Data Center

> National Renewable Energy Laboratory Revision A, March 5th 2013

Table of Contents

1.	Scope	2
2.	Publication Approval Procedure	2
3.	Physical Room Security	3
4.	Data Transfer	5
5.	Activities Within HSDC	7
6.	NREL Security Responsibilities	8
7.	NREL Quality Assurance Responsibilities	8
8.	Revision History	8

Accomplishment: Key Analysis Topics Identified

Critical

- FC durability
- Vehicle operation (hours, miles)
- Specs (power density, specific power)
- Range, fuel economy, and efficiency
- Fill performance
- Reliability

Important

- Drive behaviors
- Fill behaviors
- Power management
- Energy
- Transients
- Comparisons to conventional vehicles

These key topics were selected based on review of past CDPs, targets, most common referenced topics, and DOE feedback.

Highlights of Interactions and Collaborations

Auto Industry Partners

- Detailed discussion of NREL HSDC procedures
- Discussion of data priorities, templates, and methods
- Review of all results prior to publication

U.S. DRIVE Technical Teams

 Provide annual briefing of FCEV performance results to the Hydrogen Storage and Fuel Cell Tech Team

• FCHEA Technical Working Groups

- Participate in Transportation Working Group
- Participate in Joint H₂ Quality Task Force
- California Organizations
 - CaFCP and CHBC: NREL actively participating as member
 - CARB and CEC: New stations offer potential to provide future data to NREL

Future Work

- Support DOE in launching the new validation project
 - "Light-Duty Fuel Cell Electric Vehicle Validation Data" (FOA 625)
- Perform quarterly analysis of initial data
- Identify first set of FCEV CDPs for publication scheduled at the end of FY13
- Identify new opportunities to document FC and H₂ progress publicly

Summary

Relevance

• Validate FCEV performance against DOE and industry targets

• Approach

- Collaborate with industry partners
- Continue to develop core HSDC and analysis capability and tools
- Leverage 7+ years of analysis and experience from the Learning Demonstration

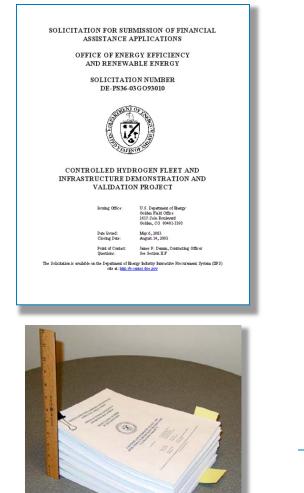
• Technical Accomplishments and Progress

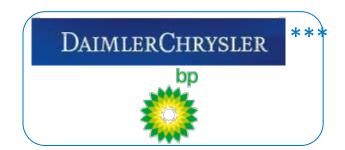
- Completed data templates and HSDC security procedures
- Prioritized key analysis topics
- Interactions with auto OEMs on priorities, data sharing, and methods

Collaborations

 Work closely with industry partners to validate methodology, and with other key stakeholders to ensure relevance of results

• Future Work


- Complete quarterly analysis of initial data
- Identify first set of FCEV CDPs for publication scheduled at the end of FY13
- Identify new opportunities to document FC and H₂ progress publically


Technical Backup Slides

History: 4 OEM/Energy Teams Selected Competitively through DOE FOA in 2004

DOE funding: \$170M Industry cost share: \$189M Total: \$359M

** now ClearEdge

now

from DOE for analysis and

NREL received \$6.6M support of this project since FY03

*** now DAIMLER

NATIONAL RENEWABLE ENERGY LABORATORY

Industry Partners: Collaborative Relationship, Working through Details of Analysis, was Critical to Success

FY03	FY04	FY05	FY06	FY07	FY08	FY09	FY10	FY11	FY12
RFP	Startup	Operat	tion, Data	a Collecti	on, and A	nalysis			

Ford/BP and Chevron/Hyundai-Kia Concluded in 2009

Daimler, GM, and Air Products (CHIP) demonstrated vehicles/stations within project through Sept. 2011

2nd Generation Vehicles Demonstrated Technology Improvements Over 1st Generation

Generation 1 Vehicles

- FC not freeze-capable
- ~2003 stack technology
- Storage: liquid H₂ and 350 and 700 bar
- Range: 100-200 miles
- Efficiency: 51%-58% at ¼ power

Generation 2 Vehicles

- FC freeze-capable
- ~2007-2009 stack tech.
- Storage: All 700 bar
- Range: 200-250 miles
- Efficiency: 53%-59% at ¼ power
- Longer FC durability