BES017 Photobiohybrid Solar Fuels – Nanoparticle-Hydrogenase Complexes

Principal Investigator: Paul W. King
NREL, 15013 Denver West Parkway
Phone: (303) 384-6277
Email: paul.king@nrel.gov

Team Members
• Katherine A. Brown (Scientist)
 NREL, 15013 Denver West Parkway
 Phone: (303) 384-721, Email: kate.brown@nrel.gov
• David W. Mulder (Scientist)
 NREL, 15013 Denver West Parkway
 Phone: (303) 384-7486, Email: david.mulder@nrel.gov
• Michael W. Ratzloff (Scientist)
 NREL, 15013 Denver West Parkway
 Phone: (303) 384-7861, Email: mike.ratzloff@nrel.gov

DOE Program Manager: Gail McLean
Phone: (301) 903-7807
Email: Gail.McLean@science.doe.gov

Objectives

The long-term objective of this project is to understand energy transduction in photochemical systems that combine the light harvesting, charge-separation of nanoparticles (NP) with catalytic H₂ activation by hydrogenases as models for solar energy conversion. By coupling hydrogenase catalysis to semiconductor nanoparticles, light driven H₂ production can be achieved by transfer of the nanoparticle exciton electron into the electron transport network of the enzyme. Light-driven production of H₂ occurs naturally in photosynthetic microbes, where hydrogenases couple to low potential reductant pools and help to maintain electron flow under anaerobic-aerobic transitions. Integration of a nanoparticle with hydrogenase catalysis allows for control over reductant potential, and will contribute to developing a broad understanding of the determinants that control enzymatic function.

Technical Barriers

The efficiencies of coupling natural or artificial photosynthesis to production of reduced chemical and fuels require a more fundamental understanding of the factors controlling energy transduction reactions, how this process couples to downstream enzymatic reactions, and the catalytic mechanisms. The aims of this project are to investigate the physical, thermodynamic and kinetic parameters of light-harvesting, charge-transfer and catalysis in nanoparticle-hydrogenase systems for solar hydrogen production. Investigation of the assembly, charge transfer and catalytic properties are providing mechanistic insights into both nanoparticle and enzyme behavior, as well as design principles for optimizing artificial photosynthetic systems.

Abstract

We have developed complexes of CdS and CdTe nanorods capped with 3-mercaptopropionic acid (MPA) coupled to Clostridium acetobutylicum [FeFe]-hydrogenase I (CaI) that photocatalyze reduction of H⁺ to H₂ at photon conversion efficiencies of up to 20% under illumination at 405 nm. Characterization has focused the compositional and mechanistic aspects of complexes that control photochemical conversion of solar energy into H₂. Complexes self-assemble by an electrostatically driven association between nanoparticle ligands and the CaI surface. Production of H₂ by the complexes was observed only under illumination, and only in the presence of a sacrificial donor. Nanoparticle-to-CaI molar ratio, sacrificial donor concentration and light intensity each have a pronounced effect on photocatalytic H₂ production. Photocatalytic activity appears to depend on contributions from electron and hole transfer, exciton recombination, and photon absorption rate. Recent investigations have focused on electron transfer rate and the effect of exciton electron potential. Kinetics of electron transfer play a critical role in the overall photochemical reactivity, as the quantum efficiency of electron transfer defines the upper limit on the quantum yield of H₂ generation. We investigated the competitiveness of ET with the electron relaxation pathways in CdS nanoparticles by directly measuring the rate and quantum efficiency of ET from photoexcited CdS nanoparticles to CaI using transient absorption spectroscopy. We found that the electron transfer rate constant (kₑₑ) and the electron relaxation rate constant in CdS (kₑₑₐₛ) were comparable, with values of 10⁻⁷ s⁻¹, resulting in a quantum efficiency of ET of 42% for complexes with the average CaI-CdS molar ratio of 1:1. Given the direct competition between the two processes that occur with similar rates, we propose that gains in efficiencies of H₂ production could be achieved by increasing kₑₑ and/or decreasing kₑₑₐₛ through structural modifications of the nanocrystals (i.e., core-shell particles). We have also investigated the effect of exciton electron potential on electron transfer and H₂ production. By varying nanoparticle diameter, the band-gap and the conduction band potential can be controlled. The electron transfer rate into CaI from CdTe nanoparticles with diameters between 2.0 and 3.5 nm was measured using time-resolved photoluminescence. The kₑₑ values were constant across the diameter range, despite a decrease in the electron overpotential from 250 to 30 mV between 2.0 and 3.5 nm diameter nanoparticles. Photocatalytic H₂ production and photon conversion.
efficiencies increased with increasing diameter despite lower overpotentials. Given the inverse trend in \(\text{H}_2 \) production and the insensitivity of \(k_{\text{ET}} \) to electron overpotential, we conclude that \(\Delta G_{\text{ET}} \) is not a determining factor in photocatalysis by CdTe-Cal complexes, and contributions from other factors, including nanoparticle recombination rates, enzyme coverage, and exciton lifetimes, dominate photocatalytic behavior. Future studies will focus on further elucidation of the interdependent factors which contribute to photocatalysis in these systems.

Progress Report

Characterization of CdTe-Cal complexes [4]
- Molecular assembly CdTe-Cal complexes was mediated by electrostatic interactions and resulted in stable, enzymatically active complexes. The assembly kinetics were monitored by CdTe photoluminescence (PL) spectroscopy and exhibited first-order Langmuir adsorption behavior.
- Photocatalytic \(\text{H}_2 \) production required the presence of a sacrificial donor (ascorbic acid), and was found to be highly dependent on donor concentration and CdTe-to-Cal molar ratio.
- Nanoparticle photoluminescence efficiency affected \(\text{H}_2 \) production, likely due to competition for available exciton electrons.

Characterization of CdS-Cal complexes [2]
- Complex self-assembly resulted in CdS binding to the in vivo electron donor (ferredoxin, Fd) binding site, as evidenced by the inhibition of Fd-driven \(\text{H}_2 \) production by CdS. Competition assays yielded a \(\Delta G_{\text{ABS}} \) in the regime between electrostatic and covalent interactions.
- Photocatalytic \(\text{H}_2 \) production was dependent on molar ratio, and the results were interpreted using a Poisson distribution. \(\text{H}_2 \) production efficiency maximized in solutions favoring a single Cal per nanorod. Higher Cal coverage appears to lead to competition of electrons and loss in efficiency due to back-electron-transfer.
- \(\text{H}_2 \) production was limited by light intensities at fluxes up to approximately 3x solar flux.
- The quantum yield of \(\text{H}_2 \) production measured for monochromatic 405nm light was 20%.

Electron transfer in CdS-Cal complexes [1]
- Electron transfer rates of \(10^7 \) were measured by transient absorption. These rates are on the same order as the recombination rate of the nanoparticle. Quantum efficiency of electron transfer was measured at 42% for 1-to-1 molar ratios, and the efficiency increased with increasing Cal concentration.
- It may be possible to enhance complex efficiency by manipulating the nanoparticle recombination rates such that ET is faster than recombination, improving the completion for exciton electrons.
- The electron transfer rate was unaffected by catalytic inhibition of Cal, indicating electron transfer occurs between the CdS and an accessory Fe-S cluster of the Cal, followed by transfer through the enzyme electron transfer pathway to the active site.

Future Directions
- Investigate the photocatalytic properties of nanoparticle/Ni-N\textsubscript{S}P\textsubscript{2} complexes in collaboration with Dr. Wendy Shaw at PNNL.
- Continue collaborative studies with CU-Boulder on developing a nanoparticle/hydrogenase charge-transfer framework model, effects of interfacial ligands on \(k_{\text{ET}} \) dynamics, and core-shell complexes.
- Integrate metallic nanoparticles into nanoparticle-hydrogenase complexes to investigate the impact
of surface plasmon enhancement on artificial photosynthesis in these systems.

Publication list (including patents) acknowledging the DOE grant or contract

