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• Project start date: 10/1/13 
• Project end date: 9/30/16 
• Percent complete: 20%  

• Total Funding Spent as of 3/31/14: 
$109,250.36 

• Total Project Value: 
$1,877,676 

• Cost Share Percentage: 
20% 

Timeline 
 
 

Budget  

Barriers 

• Colorado School of Mines 
• Nissan USA (sub-contractor) 
• National Renewable Energy 

Laboratory 
• 3M (in-kind partner) 

Partners 

Overview 

Barrier 2017 Target 

A - Durability Chemical: > 500 hours 
Mechanical: 20,000 cycles 

B - Cost $20/m2 

C - Performance ASR ≤ 0.02 Ωcm2 

max operating temp <120ºC 
and 40-80 kPa  P(H2O) 
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Relevance 
Overall Demonstrate a low cost hybrid inorganic/polymer from super-acidic 

inorganic functionalized monomers with: 
•ASR < 0.02 Ω cm2 at operating temperature of an automotive fuel 
cell stack (95-120ºC) at low inlet RH <50% 
•50 cm2 MEA with desired mechanical properties and durability  

2014 • Optimize three different candidate hybrid inorganic/polymers in 
practical systems for low ASR, then eliminate one system 

• Barrier C 

2015 • Optimize two best candidate systems for low ASR, mechanical 
properties, oxidative stability/durability, and incorporation of 
electrodes, then eliminate lowest performing system 

• Barrier A and C 

2016 • Incorporate best hybrid polymer system into MEA, deliver 50 cm2 
MEA to DOE with all desired properties for third party testing 

• Barrier A, B, and C 
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Approach – from previous funding 
Generation I Films – PolyPOM85v/BA 

Films Generally thick but ASR <0.02 Ω cm2 
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• Material Synthesis based on functionalized super acidic 
inorganic moieties, Generation II Films 
– Heteropoly acid (HPA) functionalized monomer polymer system 

– Dyneon™ functionalized with HPA 

– Zirconyl phosphonate/vinyl phosphonic acid polymers 

• All systems have tunable properties, either co-monomers 
for desired mechanical properties, or base polymers with 
desired mechanical properties. 

• Pt/HPA functionalized carbons available for incorporation 
into electrodes for MEA fabrication 

• National lab and Industry partners for scale up and         
MEA testing 

Approach 



FY 2013 Milestones 
Milestone Description % Complete 

Year 1 – Q1 HPA-TVFE monomers will be synthesized of 
sufficient purity to allow all of the functionalized 
HPA to be polymerized. 

100 

Year 2 – Q1 An HPA functionalized Dyneon™ polymer will 
be synthesized where enough HPA is stable to 
boiling that the resultant film has an ASR of        
0.02 Ohm cm2 at 80ºC and 45kPa. 

80 

Year 1 – Q3 Fabricate polyZrP films that are stable to boiling 
and measure that the resultant film has an ASR 
of 0.02 Ohm cm2 at 80ºC and 45kPa. 

50 

Year 1 – Q4 
Go/No Go 

Demonstrate at least 1 polymer system that 
achieves an ASR of ≤0.02 Ohm cm2, at 80°C 
and 45kPa. Choose two of the three hybrid 
polymer systems to move forward based on 
lowest achievable ASR under hot and dry 
conditions for water stable materials.  

50 
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Fuel Cell Stacks $12,071.60 $3,268.45 $2,255.57 $1,839.60 $1,708.45 $1,457.64
Balance of Plant $4,206.48 $2,646.99 $2,617.95 $2,180.89 $2,024.35 $1,695.69
System Assembly & Testing $116.10 $80.50 $79.12 $78.95 $78.59 $78.60
Total System Cost ($) $16,394.18 $5,995.93 $4,952.64 $4,099.44 $3,811.39 $3,231.93
Total System Cost ($/kWnet) $204.93 $74.95 $61.91 $51.24 $47.64 $40.40
Total System Cost ($/kWgross) $185.79 $67.95 $56.13 $46.46 $43.19 $36.63

Accomplishments and Progress 
Benefit Analysis  

Specification UOM Baseline HT-PEM 
Current density A/cm2 1.456 1.456 
Voltage Vdc 0.676 0.676 
Relative waste heat rejection    100% 100% 
Relative stack area   100% 1 
Relative fuel efficiency   100% 1.000 
Relative fuel stroage   100% 1.000 
Stack temperature °C 87 120 
Maximum ambient temperature °C 40 40 
Maximum ambient dT °C 47 80 
Cooling system capacity   100% 59% 
Number of subsystems                            
     for assembly   10 8 
Total Pt loading mgPt/cm2 0.186 0.1395 
Relative membrane cost   100% 120% 
Relative GDL cost   100% 100% 
Relative bipolar plate cost   100% 100% 

In order to evaluate the potential gains in 
technology, system economics have been 
compared using DOE funded baseline work1 
    
The model analysis has several assumptions:  
1)operation up to 120°C;  
2)the system humidification system can be 
removed; 
3)catalytic gains from the increased operating 
temperature; and 
4)membrane materials would be slightly (20%) 
more expensive than baseline materials. 

1 Brian James, Strategic Analysis Inc. http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/sa_fc_system_cost_analysis_2012.pdf 

New System

Annual Production Rate 1,000           10,000         30,000         80,000         130,000       500,000       

Costs as low as 
$40/kW could be 
attained at high 
production volumes. 



System I – TFVE-HPA Hybrid 
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Polymerization 
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Conductivity Measurements of Best TFVE 
Membranes, 95% RH 
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Film formation with PVDF and recently 3M ionomer, still 
being optimized, clearly initial morphology is bad if 3M 
ionomer reduces protonic conductivity!! 



Need Thinner Membranes 
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73% HSiW11O39[(TFVE-Si)2O]
19% TFVE-C10 dimer
8% PVDF-HFP

71% HSiW11O39[(TFVE-Si)2O]
23% TFVE-C10 dimer
6% 3M 733 EW

• Membrane MCK-IX-88A         
(73% HSiW11O39[(TFVE-Si)2O], 
19% TFVE-C10 dimer, 8% 
PVDF-HFP, 189 μm) needs to 
be 10 μm thick to achieve an 
ASR of 0.02 Ohm-cm2 at 70oC. 
 

• Membrane MCK-IX-90A      
(71% HSiW11O39[(TFVE-Si)2O] , 
23% TFVE-C10 dimer, 6%      
3M 733 EW, 178 μm) needs to 
be 7 μm thick to achieve an       
ASR of 0.02 Ohm-cm2 at 80oC. 

Initial TFVE membranes of new campaign, too  thick, ca. 180 μm 
and not conductive enough, HPA loading improvements are being 

accomplished above old 3M achievements of 3 years ago 



Film Processing Will be Key 
Preliminary Heat Treatment Results 
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Polymerization 
•73% HSiW11O39[(TFVE-Si)2O] 
•19% TFVE-C10 Dimer 
•8% PVDF-HFP 
•120 °C  
 

Heat Treatment 
• 160 C 
• 315 psi 
• 3 min 

 

Before heat treatment, 
heterogeneous, 180 µm 

After heat treatment, 
More homogeneous, 50 µm 

 

50 
microns 

50 
microns 



System II – Hybrid HPA-3M DyneonTM Ionomer 

Step 
3 

Phosphonation 

Step 
5 

Attachment of 
HPA 

Hydrolysis 
Step 

4 

Step 
1 

Step 
2 

3M Dyneon™ 



Measurements of Best Hybrid HPA- 3M Dyneon™ 
Ionomer, 95% RH – New Campaign 
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HPA Loading less than 17wt%                    Film Thickness = 107 µm 
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System III – poly-Zr-VPA/VPA Membrane   
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Conductivity Measurements of best ZrVPA-VPA Membrane, 
95% RH 
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Need thinner membrane for           
95% RH target 
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Collaborations 

• Prime: Colorado School of Mines – STEM University 
– Andrew Motz: Optimization of Membrane properties 
– Mei-Chen Kuo: Synthesis of System 1 and 3 
– Jim Horan: Synthesis of System 2 

• Sub: Nissan R&D Americas - OEM 
• National Laboratory: NREL 
• Cost-Share: 3M – Component Supplier 

 
 



Remaining Challenges 
 and Barriers 

• Robust thin films with target ASRs  

• Fabrication of MEAs with appropriately integrated 
electrodes 

– Full Fuel Cell relevant MEA testing protocol to develop membranes 
with durability, cost, mechanical, and performance metrics 
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Future Work 
Remainder of Year 1 
• Thin Films, processing CSM 

- Characterization at Nissan, NREL, 3M 
• Scale Up 

- System I, optimize film forming with 3M 825 EW ionomer 
- System II, optimize HPA loading 
- System III, water stability 

• Finish Pt/HPA-carbon study on heat treated Vulcan 
Year 2 
• Electrode optimization and MEA fabrication, CSM, NREL 
• Full membrane protocol testing in MEA, NREL, Nissan, 3M 
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• Consistently High Proton Conductivity in Robust films 
• 3  Film Chemistries optimized 
• All will meet targets when thin 

Summary 

DOE Target 
2017 
Ω cm2 

Result 
Ω cm2 

Thickness 
µm 

Conditions 
 

System I, 
TFVE-HPA 

0.02 0.3 180 70ºC 
95% RH 

System II, 
Dyneon-HPA  

0.02 0.2 107 80ºC 
95% RH 

System III, 
ZrP/VPA 

0.02 0.05 149 60ºC 
95% RH 




