

2014 DOE Hydrogen and Fuel Cells Program Review

Renewable Electrolysis Integrated System Development & Testing

Kevin Harrison, Michael Peters

June 18, 2014

Project ID: PD031

This presentation does not contain any proprietary, confidential, or otherwise restricted information

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Overview

Timeline

Project start date: Sep. 2003 Project end date: Oct. 2014*

Budget

FY13 DOE Funding: \$460k Planned FY14 DOE Funding: Forward funded with FY13 funds Proton Contribution: \$35k Total Project Value: \$5,700k

Barriers

- G. System Efficiency
- I. Grid Electricity Emissions (Distributed)
- J. Renewable Electricity Generation Integration (Central)
- L. Operations and Maintenance

Partners

- Xcel Energy (CRADA)
- Proton OnSite
- Giner Inc.
- DOE Wind/Hydro Program

* Project continuation and direction determined annually by DOE

Relevance

- Hydrogen is a storage fuel enabling higher penetrations of renewable electricity sources
- Electrolyzer systems can help stabilize the utility grid
- Renewable hydrogen production can provide a near-zero carbon transportation fuel

Approach to Achieving DOE Targets

- Provide independent performance testing of advanced electrolyzer stacks and systems for DOE and Industry
- Develop and optimize electrolyzer stack and sub-system performance using grid and renewable power systems
- Quantify and report improvements of integrated system performance towards DOE and Industry efficiency and cost targets

Table 3.1.4 Technical Targets: Distributed Forecourt Water Electrolysis Hydrogen Production ^{a, b, c}						
Characteristics	Units	2011 Status	2015 Target	2020 Target		
Hydrogen Levelized Cost ^d (Production Only)	\$/kg	4.20 ^d	3.90 ^d	2.30 ^d		
Electrolyzer System Capital Cost	\$/kg \$/kW	0.70 430 ^{e, f}	0.50 300 ^f	0.50 300 ^f		
System Energy Efficiency ^g	% (LH∨)	67	72	75		
	kWh/kg	50	46	44		
Stack Energy Efficiency ^h	% (LH∨)	74	76	77		
Stack Energy Efficiency	kWh/kg	45	44	43		
Electricity Price	\$/kWh	From AEO 2009 ⁱ	From AEO 2009 ⁱ	0.037 ^j		

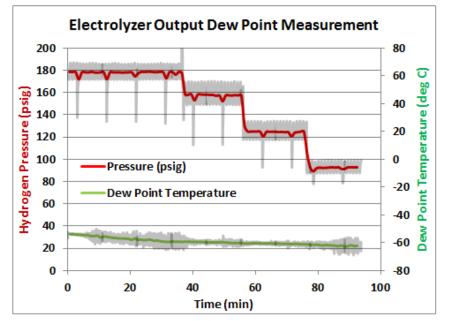
Technical Accomplishments

Compared Stack Lifetime

Wind vs. Constant Power

- **Goal:** Analyze stack decay differences between constant- and variable-powered stack operation
- Two new stacks provided by Proton
- Initial 2,000 hour operation completed
- Comparing stack decay rates under constant, full-power operation

Electrolyzers Providing Grid Support Services


- **Goal:** Decrease the cost of hydrogen production by adding multiple revenue streams
 - End-user energy management
 - Transmission and distribution support
 - Wholesale market services
- Small-scale demonstration and technical paper completed

Technical Accomplishments

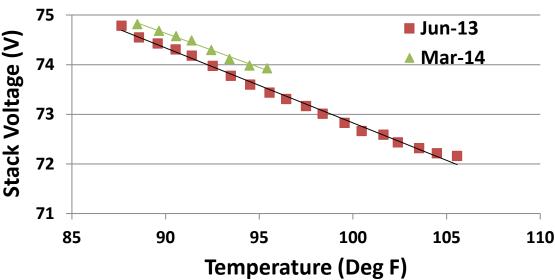
Improve Electrolyzer Efficiency by Reducing Drying Losses

- **Goal:** Reduce drying losses in electrolyzers to less than 3.5% by using innovative variable flow approach
- Measure moisture content of the gas output to validate approach
- SAE J2719 requires less than 5 ppm (by volume) water vapor in hydrogen for transportation
- Variable flow approach compliments variable stack powered operation of the electrolyzer

PEM Electrolyzer Stack Test Bed

- Proton Onsite (H-Series) 40 kW, 13 kg/day PEM electrolyzer
- System installed at the Xcel Energy/NREL Wind-to-Hydrogen project
- Instrumented electrolyzer and took control of AC/DC power supplies to operate stacks in variable power mode (a.k.a., wind simulator profile)

PEM Electrolyzer Stack Test Bed

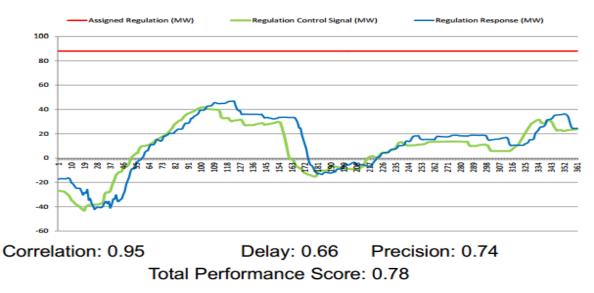

Technical Accomplishment

- First 500 hours of operation provided significantly different decay rates (break-in period)
- Next 1,500 hours (2,000 hour total) enough to baseline stack decay and provide fair starting point for longduration testing
 Steady

Operating Mode	Stack Identifier	Decay Rate (µV/cell-h)
Constant Power	Stack A	9.5
Constant Power	Stack B	9.5

Next Step: Run one stack with variable-power based on wind turbine power profile; the other will stay in constant-power mode

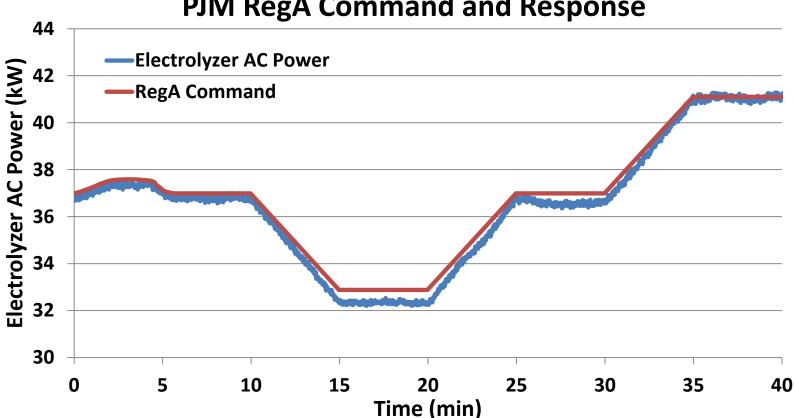
Steady-State Full-Current Operation


Electrolyzer Grid Integration

- Approach Test electrolyzer's ability to participate in grid ancillary services to reduce the overall cost of hydrogen production by adding multiple value streams.
- Electricity generator and dispatchable loads participating in grid services must meet ramping requirements
- Tested electrolyzer using standard utility ramping power profiles
 - Collected electrolyzer system AC power
 - Only have control of the electrolyzer stacks
 - Balance of plant is another opportunity
- **Previous Work:** Intentionally disturbed diesel-powered microgrid and compared response time of PEM and Alkaline electrolyzer systems using stack load to stabilize frequency.

Regulation Market Test

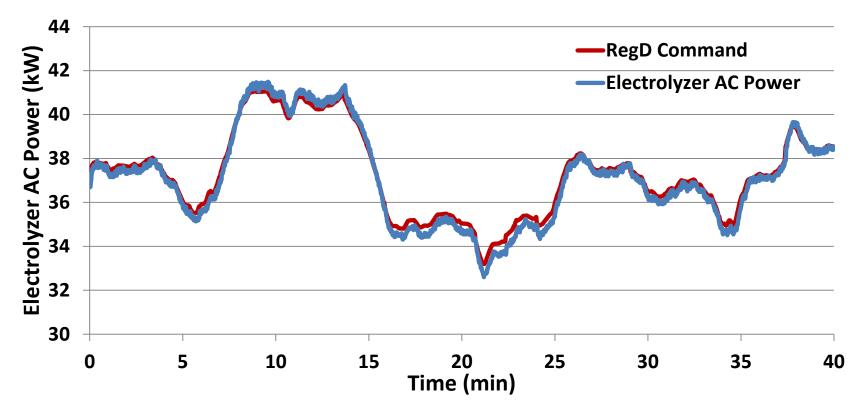
- PJM Regulation Testing: Resources need to achieve total performance score > 75%
- Performance score calculated with a weighted average between:
 - Accuracy Correlation of control signal and regulating units response
 - Delay Time delay between control signal and point of highest correlation from Step 1
 - Precision Difference between the areas under the curve for the control signal and the regulating units response



Regulation Market Test

Technical Accomplishment:

- PJM RegA Test: used for traditional regulation
- For regulating resources with physical characteristics that limit ramp rate ۲
- Results show strong correlation between command and response which would allow the electrolzyer to bid in to the regulation market


PJM RegA Command and Response

Regulation Market Test

Technical Accomplishment:

- PJM RegD Test: dynamic regulation signal testing
- For regulating resources with no physical characteristics that limit ramp rate
- Results show strong correlation between command and response which would allow the electrolzyer to bid in to the regulation market

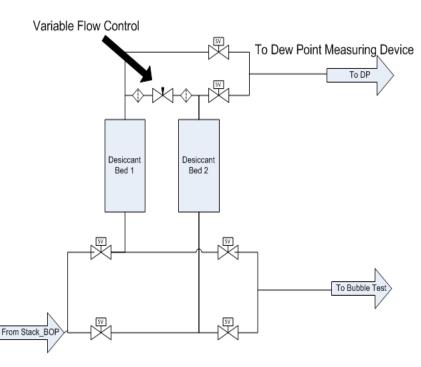
PJM RegD Command and Response

System Efficiency

Approach: Validated electrolyzer mass flow and system efficiency using NREL-designed device

- Validated Proton H-Series mass flow
- Varied stack current to look at different flow rates
- Unit showed good precision, all three trials less than ± 1 gram with 95% confidence

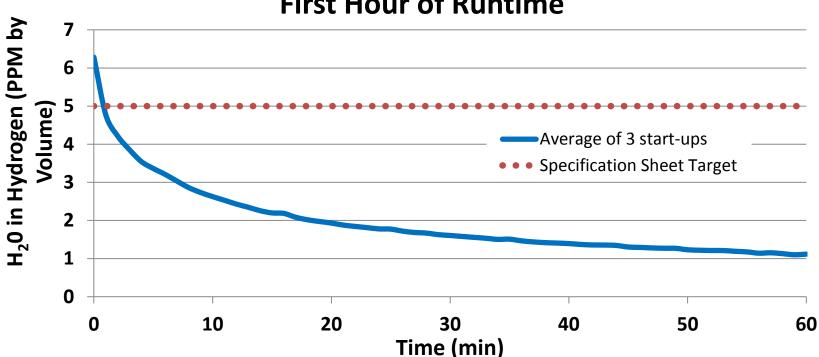
	Trial 1 (n = 75) 96% of rated power	Trial 2 (n = 24) 77% of rated power	Trial 3 (n = 61) 71% of rated power	
Stack Current (A)	148.4	119.8	110.0	
Measured Flow (kg/hr)	0.520	0.410	0.373	
Rated Flow* (kg/hr)	0.516	0.417	0.383	
* Rated flow of 0.539 kg/hr (Proton) multiplied by % of stack current				



NATIONAL RENEWABLE ENERGY LABORATORY

System Efficiency – Drying Losses

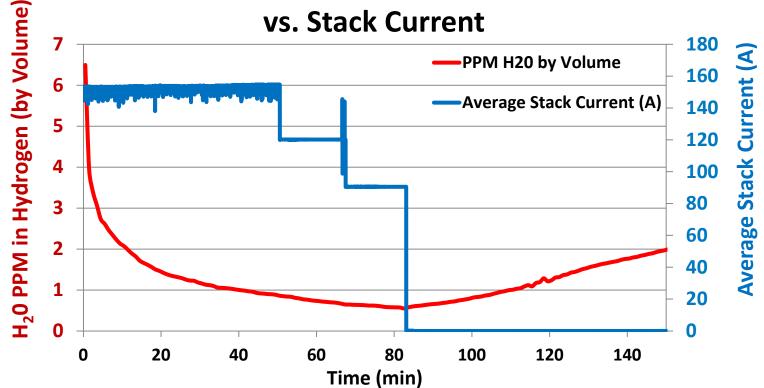
- Technical Accomplishment: Confirmed dew point and hydrogen loss due to drying system with varying stack power, without variable flow drying technique
- Found drying losses to be between 11-18% of electrolyzer flow
- As stack current decreased the percentage of hydrogen lost increased
- Variable flow drying technique will maintain the percentage of hydrogen lost based on hydrogen output (stack power) instead of losing a higher percent as stack power is decreased


Drying Losses	100% Stack Power	80% Stack Power	60% Stack Power	
Flow (kg/hr)	0.07	0.07	0.07	
% of Rated Flow	11%	14%	18%	
* Sample size n = 5 for each test				

System Efficiency – Drying Losses

Technical Accomplishment:

- Proton H-Series specification sheet and SAE J2719 look for H_2O in $H_2 < 5$ ppm
- Typical startup shows ppm below standard in less than 5 minutes
- Current electrolyzer drying technologies exceed SAE J2719 in a short amount of time, variable flow drying will allow less hydrogen to be lost while still staying under 5 ppm


Typical Hydrogen Product Water Vapor Content First Hour of Runtime

System Efficiency – Drying Losses

Technical Accomplishment:

- Varied stack power:
 - ppm H₂O in H₂ was unaffected by the variation
 - Drying losses as a percentage of H₂ output increased (previous slides)
- Variable flow drying technique combined with variable stack power will allow higher electrolyzer efficiency while maintaining < 5 ppm H_2O in H_2

Hydrogen Product Water Vapor Content

Collaborations

<u>Formal</u>

Giner Inc.

• Work for Others

Xcel Energy (CRADA)

• Wind-to-Hydrogen demonstration project since 2005

Proton Onsite

- Provided (2) PEM stacks for variable power testing
- Hydrogen drying test bed

International

Presented results at;

- ADvanced ELectrolysers (ADEL) International Workshop, Corsica, France
- F-Cell World of Energy Solutions, Stuttgart, Germany

Internal to NREL

Hydrogen Component Validation

TV19 – Presented by Danny Terlip

700 bar Hydrogen Hose Reliability & Improvement

PD100 – Presented by Kevin Harrison

INTEGRATE

- Integrated Network Test-bed for Energy Grid Research and Technology Experimentation
- FCTO Large active area stack testing and balance of plant optimization
- Investigate and demonstrate how EE and RE technologies can work together holistically to provide grid services and increase their hosting capacity

Future Work

- Complete testing and economic analysis of novel drying technique to optimize drying losses in a renewable (variable) powered system
- Automate inline hydrogen drying monitoring system to quantify drying losses, production flow and dew point over long durations
- Replace 3rd (of 3) ~10 kW PEM stacks
 - 6000 hours (milestone), variable wind profile to determine stack decay

Summary

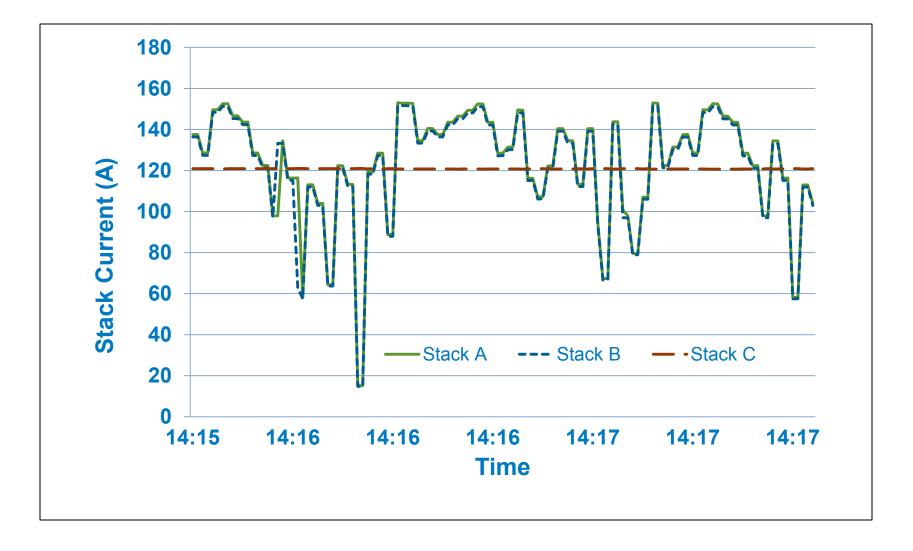
Relevance: Goals consistent with reducing capital cost, improving stack and system efficiency and integrating systems with renewable energy sources

Approach: Develop and demonstrate advanced controls, novel sub-systems, system-level improvements and integrate with renewable energy sources to reduce the cost of hydrogen

Technical Accomplishments:

- Installed two new PEM stacks and collected 2,000 hours of constant power data to baseline early stack decay rate
 - Both stacks showed a decay rate of 9.5 μ V/cell-h
- Tested smaller scale electrolyzers ability for grid integration
 - Exploring added value streams to reduce production costs
- Baseline commercially available electrolyzer water vapor
 Electrolyzer reaches <5 ppm in under 5 minutes
 Stack Current does not affect ppm

Collaborations:


- Proton Onsite Electrolyzer stack variable power testing and large active area stack testing
- Giner Inc. Large active area stack testing
- Internal: INTEGRATE, Component Validation and Hose Reliability ۲

Proposed Future Research:

- Continue testing novel drying technique to optimize drying losses versus output hydrogen
- 6,000 hours variable wind profile to determine stack decay on Proton stacks ۲
- Design and build hydrogen drying cart to allow autonomous collection of drying losses, production flow and dew point

Backup Slides

Example of Variable-Power Profile

