Economical Production of Hydrogen Through Development of Novel, High Efficiency Electrocatalysts for Alkaline Membrane Electrolysis

P. I. Name: Kathy Ayers
Organization: Proton OnSite
Date: June 18th, 2014

Project ID: PD094
Overview

Timeline
- Project Start: 20 Feb 2012
- Project End: 21 April 2015
- Percent complete: 55%

Budget
- Total Funding Spent* - $487,000
- Total Project Value - $1,150,000
- Cost Share Percentage - 0% (SBIR)

*as of 3/31/14

Barriers
- Barriers addressed
 G: Capital Cost

Table 3.1.4 Technical Targets: Distributed Forecourt Water Electrolysis

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Units</th>
<th>2011 Status</th>
<th>2015 Target</th>
<th>2020 Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen Levelized Cost (Production Only)</td>
<td>$/kg</td>
<td>4.2(^d)</td>
<td>3.9(^d)</td>
<td>2.3(^d)</td>
</tr>
<tr>
<td>Electrolyzer System Capital Cost</td>
<td>$/kg</td>
<td>0.70(^e)</td>
<td>0.50(^f)</td>
<td>0.50(^f)</td>
</tr>
<tr>
<td></td>
<td>$/kW</td>
<td>430(^e,f)</td>
<td>300(^f)</td>
<td>300(^f)</td>
</tr>
<tr>
<td>System Energy Efficiency</td>
<td>%(LHV)</td>
<td>67</td>
<td>72</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>kWh/kg</td>
<td>50</td>
<td>46</td>
<td>44</td>
</tr>
<tr>
<td>Stack Energy Efficiency</td>
<td>%(LHV)</td>
<td>74</td>
<td>76</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>kWh/kg</td>
<td>45</td>
<td>44</td>
<td>43</td>
</tr>
</tbody>
</table>

Partners
- Illinois Institute of Technology

Collaborators
- Sandia National Labs
Relevance: Capital Cost

- Bipolar assembly still represents highest cost of PEM stack
- Alkaline media enables transition from titanium to stainless steel: eliminates 75% of part cost
 - Also should enable lower cost catalysts
- Saves ~$.11/kg capital cost with H2A assumptions
 - Current PGM costs, 500 units/year, 1500 kg/day
Relevance: Project Concept

- Alkaline membranes provide benefits of both PEM and KOH
- Efficiency should be between existing technologies
- AEM membranes gaining stability
Relevance: Catalyst Status

- Traditional Ni-based catalysts have not yet translated from solution to ionomer

- Note: catalyst is only 6% of cost in PEM system
- Intermediate solution can still enable significant flow field and stack cost savings with AEM technology
Relevance: Membrane Status

- Proton has become test bed for electrolysis AEMs
 - Testing protocol and electrode/cell designs established
 - Need characterization of degradation mechanisms

- ARPA-E results, highest stability AEMs to date

>2000 hours of operation but need to improve voltage stability
Relevance: Commercialization Strategy

- Fueling represents a high need for cost reduction but need near term markets and product strategy as well
- Hydrogen replacing helium in lab applications
 - Less dependent on efficiency, higher risk tolerance at small scale
 - Highly price sensitive market
- Leverages Proton’s existing product re-design effort
 - Prototype AEM system to be built based on new design
- Product cost analysis to be performed on final configuration

System Configuration for AEM
Relevance: Long Term Value Proposition

• Hydrogen via electrolysis is ideally suited for:
 – Transportation fuel
 – Grid-buffering and energy storage
 – High value chemical streams
 – Green production of fertilizer
 – Supplement to natural gas for higher efficiency

• PEM technology can meet short term goals
 – Parallel efforts in cost reduction ongoing

• AEM technology leverages MW scale designs and can be inserted as technology matures
Approach
Task Breakdown

• Task 1.0 Catalyst Development
 – Subtask 1.1 Synthesis of new compositions
 – Subtask 1.2 Characterization of physical properties

• Task 2.0 Membrane Development
 – Subtask 2.1 Synthesis of AEM membrane
 – Subtask 2.2 Characterization through 2D NMR

• Task 3.0 Electrode Development & Testing
 – Subtask 3.1 Membrane Electrode Assembly
 – Subtask 3.2 Gas Diffusion Electrode
 – Subtask 3.3 Testing and Post Operation Assessment
Catalyst Approach

- Leverage pyrochlorel class of catalysts (A₂B₂O₆-7)
 - Good kinetics for OER, stable in base
 - Able to make as nanoparticles
- Investigate compounds with A = Bi, Pb; B = Ru, Ir

Phase I Results
Membrane Approach

- IIT development of alternate polymers
- Leverage NMR for degradation studies
- Continue to evaluate Sandia/LANL materials
Approach: Materials Integration

- Materials will move to Proton configuration against baseline as progress is made
- Perform post-testing analysis
Approach
Task Breakdown

• **Task 4.0 Stack Design and Fabrication**
 – Subtask 4.1 Cell Stack Materials Evaluation
 – Subtask 4.2 Cell Stack Design Scale-up

• **Task 5.0 System Design and Fabrication**
 – Subtask 5.1 System Materials Evaluation
 – Subtask 5.2 System Scale-up
 – Subtask 5.3 System Operation
 – Subtask 5.4 Full-Scale Durability Testing
Approach: Stack Design & Development

- Alternative materials of construction will be evaluated in terms of strength, hydrogen embrittlement, and cost.
 - Examples include nickel, aluminum, steel
- Candidates down-selected will be bench-tested for performance and durability.

AEM Bench-Test allows for quick screening of materials identified for evaluation.
Approach: AEM System Development

- System materials will be replaced with cheaper alternatives
 - Hydrogen phase separators, plumbing
- Will also serve as test station for durability tests
- Proof of concept for cost reduced product

316L SS Pressure Vessels, valves, and H₂ plumbing will be replaced with cheaper materials
Approach: Milestones

<table>
<thead>
<tr>
<th>Task Number</th>
<th>Milestone Description</th>
<th>Due Date</th>
<th>% Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1</td>
<td>Synthesis, characterization, and delivery of large (5-10g) batch of low Ru–content lead ruthenate and bismuth ruthenate catalysts</td>
<td>10/15/2013</td>
<td>100%</td>
</tr>
<tr>
<td>1.1.2</td>
<td>Screening of initial ionomer compositions</td>
<td>1/15/2014</td>
<td>75%</td>
</tr>
<tr>
<td>1.2</td>
<td>Process development for reversal of carbonate contamination</td>
<td>7/15/2014</td>
<td>25%</td>
</tr>
<tr>
<td>1.3</td>
<td>Report elucidating fundamental degradation pathways in AEMs with different cations under electrolyzer test conditions as ascertained using 2D NMR spectroscopy (COSY, HMBC, HMQC)</td>
<td>11/14/2014</td>
<td>25%</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Complete 200 hour durability testing with down-selected catalysts</td>
<td>11/30/2013</td>
<td>100%</td>
</tr>
<tr>
<td>3.1</td>
<td>Using baseline membrane and catalysts, recommend approach for electrode fabrication and attachment</td>
<td>12/30/2013</td>
<td>50%</td>
</tr>
<tr>
<td>3.2</td>
<td>Identify optimal MEA for full-scale operational testing.</td>
<td>4/23/2014</td>
<td>25%</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Complete material assessment of alkaline compatible stack materials (Cost and strength)</td>
<td>6/28/2014</td>
<td>10%</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Finish CAD drawings and sizing calculations for a 1 LPM hydrogen flow rate cell stack</td>
<td>7/30/2014</td>
<td>100%</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Complete concept review of methods for CO₂ management within system, including method from 1.2</td>
<td>9/15/2014</td>
<td>10%</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Generate complete CAD model for lab scale alkaline system</td>
<td>12/15/2014</td>
<td>25%</td>
</tr>
</tbody>
</table>
Technical Accomplishments: Catalyst Development

- Successfully synthesized catalysts with higher activity

RDE results:

OER activity (1.5 V vs. RHE) of NiCo electrocatalyst = 0.11±0.01 A/g;

- 100 times less than IrO₂ (10 A/g)
- 2000 times less than Pb₂Ru₂O₆.5 (202 A/g).
Catalyst: In Cell Measurements

In Cell Evaluation
Polarization Curves at 50ºC

Improved translation of RDE performance to in cell
Catalyst Performance vs. Cost

- >80% material cost reduction over baseline OER catalyst
 - Optimum compositions of lead and bismuth ruthenates
 - Better utilization achieved with a more effective GDE structure

<table>
<thead>
<tr>
<th>Material Cost, % of PEM Catalyst</th>
<th>Relative Material Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEM State-of-the-Art OER Catalyst</td>
<td>100.00%</td>
</tr>
<tr>
<td>Pb2Ir2O6.5</td>
<td>47.87%</td>
</tr>
<tr>
<td>Pb2Ru2O6.5</td>
<td>16.17%</td>
</tr>
<tr>
<td>Bi2.4Ru1.6O6.5</td>
<td>15.20%</td>
</tr>
<tr>
<td>Pb2.9Ru1.106.5</td>
<td>12.09%</td>
</tr>
</tbody>
</table>
Technical Accomplishments: Membrane

Isolated degradation pathways with NMR

BrPPO-TMA$^+$ membrane

Cathode AEM binder

Anode AEM binder

Backbone degradation
Use of a spacer chain was used to improve backbone stability. Separation between quaternary groups (after substitution of Br) and backbone by 6 carbons reduces the electronic effects in the aromatic rings minimizing backbone hydrolysis.

Reduction of the ketone is a necessary step to get AEMs stable in alkaline solutions.
Technical Accomplishments

- Task 3: Electrode Development and Testing
 - Successfully fabricated stable anode GDEs in the AEM cell

At 50°C and 0.4 A/cm²

Longest stability was achieved using a porous nickel GDE. Unstable operation was observed using stainless steel and titanium.
GDE Added Binder Formulations

Catalyst Evaluation
Polarization Curves at 50°C

Formulation 1: poor adhesion
Formulation 2: good adhesion but mass transport issues
Optimization ongoing
Impact of Carbonate Addition

Operational Stability
AEM Membrane and Ionomer – PEM Catalysts
200 mA/cm² and 50°C

*Stable performance of the AEM and ionomer in electrode layer demonstrated even without buffering feed water, but significant performance improvement realized with the addition.

*Test done at 25ºC
Performance vs. Previous Baseline

Cell Efficiency at 50ºC
PEM Catalyst versus IIT Anode Catalyst
A201 Membrane and AS-4 Ionomer

<table>
<thead>
<tr>
<th>Current Density</th>
<th>Baseline PEM Catalysts</th>
<th>Alt. Catalyst AEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 mA/cm²</td>
<td>70%</td>
<td>62%</td>
</tr>
<tr>
<td>500 mA/cm²</td>
<td>79%</td>
<td>64%</td>
</tr>
</tbody>
</table>

AEM: Proton Exchange Membrane
Technical Accomplishments

• Task 4: Stack Design
 – Modeling of stack complete. Flow modeling initiated.
 – Strength calculations on alt. materials initiated.

1L/min cell stack design
Future Work: IIT

• Continue development of alternate binders and membranes
 – Optimize separately to distinguish effects
 – Start with ionomer and Tokuyama A201
• Characterize decomposition mechanisms using 2-D NMR and use to iterate on binder and membrane synthesis
• Evaluate impact of cross-linking on membrane stability
• Determine differences in degradation modes for anode and cathode feed modes
• Perform corrosion study for titanium, stainless steel and nickel porous plates
• Provide samples to Proton for durability testing at differential pressure
Future Work: Proton

• **Cell Stack Development**
 - Complete strength calculations and hydrogen uptake analysis on alternate materials.
 - Provide feedback to IIT on material testing for iterations
 - Compare to Sandia membrane baseline for stability
 - Order down-selected cell materials and stack embodiment hardware
 - Test new stack configuration for performance and impact on previously reported durability
 - Conduct multi-cell operational test to simulate pilot run and assess reproducibility.

• **System Development**
 - Conduct material characterizations
 - Order system components for prototype demonstration
 - Conduct steady-state operational testing of complete stack/system
 • Evaluate durability with and without carbonate in the water loop
Collaborators

• **Illinois Institute of Technology:**
 – Catalyst and ionomer synthesis and screening
 – 2-D NMR for ionomer/membrane degradation studies
 – Fundamental characterization

• **Sandia National Lab**
 – Supply of ionomer and membrane to Proton
 – Best performing class of materials from ARPA-E project as baseline for study
Summary of Previous Year Comments and Responses

- No comparisons were made to known state-of-the-art materials with RDE
 Answer: RDE data and full cell data was shown for lead ruthenate catalysts vs. iridium oxide catalysts. Nickel data was added to the 2014 slides.
- The extent of collaboration with IIT on membranes was not clear.
 Answer: IIT has been involved actively in the synthesis and evaluation of several anion exchange membranes. Some results are shown here.
- Need more structural characterization of pyrochlores.
 Answer: Catalysts were evaluated measuring BET, conductivity, and OER activity which provides enough information to decide if they are viable. Scope and budget do not allow for more fundamental characterization.
- There should be a focus on why certain materials exhibit low surface area.
 Answer: Differences in synthesis method likely impacted surface areas.
- Should reduce the catalyst development work and focus on membrane performance and durability issues.
 Answer: Have shifted more focus (at IIT) to synthesis of AEMs and stability (both as membrane and solubilized AEM binder). However, the work as proposed and approved by the proposal reviewers needs to be completed.
Summary

Relevance: Demonstrates technology pathway to reducing cell stack capital cost and resulting hydrogen production cost for further market penetration

Approach: Synthesize a stable OER catalyst to enable low cost flow fields for cheaper AEM operation

Technical Accomplishments:
- Promising catalyst and membrane/ionomer compositions identified, improvement demonstrated
- 2D NMR to understand degradation mechanisms
- 200 hour durability test successfully completed for anode GDE
- System layout and stack flow modeling completed

Collaborations:
- Sandia: Casting additional membranes of best performing ionomers to date

Proposed Future Work:
- Optimize cathode and anode GDEs to increase cell efficiency, while maintaining operational stability
- Reduce cost of stack and system components for total electrolyzer reduction in cost
- Electrode and stack scale-up
- Manufacturing cost reduction study and refined H2A model $/kg cost analysis
Acknowledgments

The Proton Team

• Everett Anderson
• Blake Carter
• Chris Capuano
• Luke Dalton
• Nem Danilovic
• Morgan George
• Judith Manco
• Mike Niedzwiecki
• Mike Parker
• Julie Renner
• Andy Roemer

Our Collaborators

• Vijay Ramani
• Chris Arges
• Javier Parrondo
• Cy Fujimoto (Sandia)